Abstract The rocksalt structured (Co,Cu,Mg,Ni,Zn)O entropy-stabilized oxide (ESO) exhibits a reversible phase transformation that leads to the formation of Cu-rich tenorite and Co-rich spinel secondary phases. Using atom probe tomography, kinetic analysis, and thermodynamic modeling, we uncover the nucleation and growth mechanisms governing the formation of these two secondary phases. We find that these phases do not nucleate directly, but rather they first form Cu-rich and Co-rich precursor phases, which nucleate in regions rich in Cu and cation vacancies, respectively. These precursor phases then grow through cation diffusion and exhibit a rocksalt-like crystal structure. The Cu-rich precursor phase subsequently transforms into the Cu-rich tenorite phase through a structural distortion-based transformation, while the Co-rich precursor phase transforms into the Co-rich spinel phase through a defect-mediated transformation. Further growth of the secondary phases is controlled by cation diffusion within the primary rocksalt phase, whose diffusion behavior resembles other common rocksalt oxides. Graphical abstract
more »
« less
High temperature stability of entropy-stabilized oxide (MgCoNiCuZn)0.2O in air
Entropy-stabilized oxides are single-phase, multicomponent oxides that are stabilized by a large entropy of mixing, ΔS, overcoming a positive enthalpy. Due to the −TΔS term in the Gibbs' free energy, G, it can be hypothesized that entropy-stabilized oxides demonstrate a robust thermal stability. Here, we investigate the high temperature stability (1300–1700 °C) of the prototypical entropy-stabilized rocksalt oxide (MgCoNiCuZn)0.2O in air. We find that at temperatures >1300 °C, the material gradually loses Cu and Zn with increasing temperature. Cu is lost through a selective melting as a Cu-rich liquid phase is formed. Zn is sublimed from the rocksalt phase at approximately similar temperatures to those corresponding to the Cu loss, significantly below both the melting temperature of ZnO and its solubility limit in a rocksalt phase. The elemental loss progressively reduces the entropy of mixing and results in a multiphase solid upon quenching to room temperature. We posit that the high-temperature solubility of Cu and Zn is correlated providing further evidence for entropic stabilization over general solubility arguments.
more »
« less
- PAR ID:
- 10595147
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 124
- Issue:
- 15
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions. New methods, such as electrical pulse heating and laser melting, can fill the gaps in experimental data and validate ab initio predictions.more » « less
-
The diffusion behavior and phase equilibria in the Cu-Zn binary system were investigated using solid-solid and solid-liquid diffusion couples. Heat treatments at temperatures ranging from 100 to 750 °C were performed and the samples were examined using optical microscopy, energy dispersive x-ray spectroscopy, and electron probe microanalysis to identify the phases and to obtain composition profiles. Solubility limits of both solid solution and intermetallic phases were then evaluated, and a forward-simulation analysis (FSA) was applied to extract interdiffusion coefficients. The composition profiles from Hoxha et al. were also re-analyzed using FSA to obtain more reliable diffusion coefficient data without the assumption of constant diffusion coefficients for the intermetallic phases. A comprehensive assessment of the interdiffusion coefficients in three intermetallic phases of the Cu-Zn system was performed based on the results from the current study as well as those in the literature. Activation energies and Arrhenius pre-factors were evaluated for each phase as a function of composition. The fitted equations based on the comprehensive assessment have the capabilities of computing the interdiffusion coefficients of each of the phase at a given composition and temperature. Suggested modifications to the Cu-Zn binary phase diagram were presented based on the new experimental information gathered from the present study. A clear explanation is provided for the puzzling low Zn concentrations often observed in the Cu-rich fcc phase of Cu-Zn diffusion couples in comparison with the expected high solubility values based on the equilibrium Cu-Zn phase diagram.more » « less
-
High‐entropy oxides (HEOs) are being extensively studied for various functional applications, but there is limited research into the mechanical behavior of these materials, especially at elevated temperatures. Bulk (Co, Cu, Mg, Ni, Zn)O (transition metal (TM)‐HEO) samples are formed into dome shapes at 800 °C and 70 kPa. Deformation experiments and finite element analysis (FEA) reveal that TM‐HEO has a creep stress exponent ofn = 0.6, indicating that TM‐HEO deforms through superplastic deformation and exhibits shear‐thickening behavior. Comparisons of experimental strain rates to those calculated using existing superplasticity mechanism models signify that TM‐HEO deforms through grain boundary sliding accommodated by a solution‐precipitation mechanism from a secondary phase. A Cu‐rich tenorite phase, commonly observed in the grain boundaries of TM‐HEO, is proposed as the secondary phase facilitating deformation. It is important to highlight here that the superplastic deformation behavior in TM‐HEO is active under modest temperature and pressure conditions, as noted above. Low‐temperature superplastic deformation will provide a powerful method of manufacturing HEO ceramics into net shape parts, greatly expanding their potential applications.more » « less
-
Abstract Multicomponent oxides have received significant recent attention due to their potential for improved property tunability. In simple structures, compositionally complex oxides can be stabilized by increased configurational entropy and are sometimes called “high entropy” ceramics. In phases with multiple cation sublattices or complex stoichiometries, it is more difficult to achieve high configurational entropy. However, there is limited knowledge about the factors influencing stability and solubility limits in many systems. This study investigated the limits on the stability of rare earth (RE) aluminates containing mixtures of RE cations including Gd, La, Nd, Yb, and Y in cases where (i) a fixed RE:Al ratio attempts to constrain the material into a single‐phase aluminate or (ii) a two‐phase aluminate, and in equilibrium with RE zirconates that readily dissolve multiple RE3+. The results show that it is difficult to form single‐phase, equimolar mixed‐RE aluminates encompassing a range of RE3+sizes. Instead, the RE3+selectively partition into specific phases based on RE‐size trends in the constituent binary systems. The results are discussed in terms of the phase stability and cation partition trends and potential applications.more » « less
An official website of the United States government
