skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing high-performance superconductors with nanoparticle inclusions: Comparisons to strong pinning theory
One of the most promising routes for achieving high critical currents in superconductors is to incorporate dispersed, non-superconducting nanoparticles to control the dissipative motion of vortices. However, these inclusions reduce the overall superconducting volume and can strain the interlaying superconducting matrix, which can detrimentally reduce Tc. Consequently, an optimal balance must be achieved between the nanoparticle density np and size d. Determining this balance requires garnering a better understanding of vortex–nanoparticle interactions, described by strong pinning theory. Here, we map the dependence of the critical current on nanoparticle size and density in (Y0.77, Gd0.23)Ba2Cu3O7−δ films in magnetic fields of up to 35 T and compare the trends to recent results from time-dependent Ginzburg–Landau simulations. We identify consistency between the field-dependent critical current Jc(B) and expectations from strong pinning theory. Specifically, we find that Jc ∝ B−α, where α decreases from 0.66 to 0.2 with increasing density of nanoparticles and increases roughly linearly with nanoparticle size d/ξ (normalized to the coherence length). At high fields, the critical current decays faster (∼B−1), suggesting that each nanoparticle has captured a vortex. When nanoparticles capture more than one vortex, a small, high-field peak is expected in Jc(B). Due to a spread in defect sizes, this novel peak effect remains unresolved here. Finally, we reveal that the dependence of the vortex creep rate S on nanoparticle size and density roughly mirrors that of α, and we compare our results to low-T nonlinearities in S(T) that are predicted by strong pinning theory.  more » « less
Award ID(s):
1905909
PAR ID:
10594977
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
9
Issue:
9
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A microscopic understanding of vortex pinning in type II superconductors began with the theoretical discovery of magnetic vortices by Abrikosov, which received the 2003 Nobel Prize in Physics [1, 2]. When type II superconductors are exposed to magnetic fields (H), the magnetic field enters as quantized vortices, each with a fundamental flux j0 = 2.07 × 10−11 T cm−2 , or 2.07 × 10−15 Wb. The vortex core size on the order of the superconducting coherence length can be very small, e.g. ∼1–2 nm for the cuprate family of high-temperature superconductors (HTSs). The vortices electrically interact with each other by repelling, and act collectively together as a flux lattice that is affected by the intrinsic crystal lattice properties and microstructure defects. For superconducting power applications where applied magnetic fields are in the range of 0.1 T to >30 T, the areal number density of the vortices can reach incredibly high values. For example, for an applied magnetic field of 5 T, the vortex areal density is around 2.5 × 1011 cm−2 , which translates to inter-vortex spacing of about 20 nm (assuming a square lattice for vortices). Somewhat surprisingly, if the crystal lattice for type II superconductors, such as HTS cuprates [3] is nearly perfect without any defects to pin vortices, the vortices can move collectively and almost freely in an applied magnetic field due to Lorentz forces, which results in electrical resistance at a fairly low critical current density Jc(H, T) at an applied magnetic field (H) and temperature (T). In order to realize useful critical current densities in type II superconductors, imperfections and defects must be added to the crystal lattice to effectively pin vortices. The simplest example of this was achieved in the (Y, RE)Ba2Cu3O7 (where RE is rare earth elements) family by depositing thin films, in which high densities of dislocations and other growth defects are added into the film microstructure and dramatically increase the critical current density Jc(77 K, H//c-axis) > 106 A cm−2 compared to Jc (77 K) < 103 A cm−2 for single crystals [4–6] 
    more » « less
  2. We simulate the motion of a commensurate vortex lattice in a periodic lattice of artificial circular pinning sites having different diameters, pinning strengths, and spacings using the time-dependent Ginzburg-Landau formalism. Above some critical DC current density Jc, the vortices depin, and the resulting steady-state motion then induces an oscillatory electric field E (t) with a defect "hopping" frequency f0, which depends on the applied current density and the pinning landscape characteristics. The frequency generated can be locked to an applied AC current density over some range of frequencies, which depends on the amplitude of the DC as well as the AC current densities. Both synchronous and asynchronous collective hopping behaviors are studied as a function of the supercell size of the simulated system and the (asymptotic) synchronization threshold current densities determined. 
    more » « less
  3. One-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-x nanocomposite films provide strong collective pinning at magnetic field B//c-axis. In this work, we reveal a 1D-APC/YBa2Cu3O7-x interface is preferred for high pinning efficiency of individual 1D-APCs including BaHfO3 and BaZrO3. The coherent 1D-APC/YBa2Cu3O7-x interface may be obtained via either growth of the nanocomposite films at optimal condition or Ca-diffusion to dynamically reduce the interface strain during the nanocomposite film growth. Interestingly, the high pinning efficiency of the 1D-APCs with coherent interfaces with YBCO not only lead to a high critical current density (Jc) in magnetic fields up to 9.0 T at H//c-axis but also enhanced Jc over a larger angular range when H is away from H//c-axis up to θ=60-80 degree than that in the case the interface is defective. This result suggests the importance of understanding and engineering the APC/YBCO interface for optimal pinning in nanocomposite films. 
    more » « less
  4. High critical current (Ic) in high magnetic fields (B) with minimal variations with respect to the orientation of the B field is demanded by many applications such as high-field magnets for fusion systems. Motivated by this, this work studies 6 vol. % BaZrO3/YBa2Cu3O7 (BZO/YBCO) multilayer nanocomposite films by stacking two 10 nm thick Ca0.3Y0.7Ba2Cu3O7 (CaY-123) spacers with three BZO/YBCO layers of thickness varied from 50 to 330 nm to make the total film thickness of 150–1000 nm. The Ca diffusion from the spacers into BZO/YBCO was shown to dramatically enhance pinning efficiency of c-axis aligned BZO nanorods, which yields high and almost thickness independent critical current density (Jc) in the BZO/YBCO multilayer nanocomposite films. Remarkably, enhanced Jc was observed in these multilayer samples at a wide temperature range of 20–80 K and magnetic fields up to 9.0 T. In particular, the thicker BZO/YBCO multilayer films outperform their thinner counterparts in both higher value and less anisotropy of Jc at lower temperatures and higher fields. At 20 K and 9.0 T, Ic is up to 654 A/cm-width at B//c in the 6% multilayer (1000 nm) sample, which is close to 753 A/cm-width at B//ab due to the intrinsic pinning. This result illustrates the critical role of the Ca cation diffusion into the YBCO lattice in achieving high and isotropic pinning in thick BZO/YBCO multilayer films. 
    more » « less
  5. It is well known that in the high-temperature superconductor YBa2Cu3O7-x (YBCO), oxygen vacancies (VO) control the carrier concentration, its critical current density and transition temperature. In this work, it is revealed that VO also allow the accommodation of local strain fields caused by large-scale defects within the crystal. We show that the nanoscale strain associated with Y2Ba4Cu8O18 (Y124) intergrowths—that are common defects in YBCO—strongly affect the venue and concentration of VO. Local probe measurements in conjunction with density-functional-theory calculations indicate a strain‐driven reordering of VO from the commonly observed CuO chains towards the bridging apical sites located in the BaO plane and bind directly to the superconducting CuO2 planes. Our findings have strong implications on the physical properties of the YBCO, as the presence of apical VO alters the transfer of carriers to the CuO2 planes and creates structural changes that affect the Cu-O bonds in the superconducting planes. In addition, the revelation of apical VO also has implications on modulating critical current densities and enhancing vortex pinning. 
    more » « less