skip to main content


This content will become publicly available on December 21, 2025

Title: Driven responses of periodically patterned superconducting films
We simulate the motion of a commensurate vortex lattice in a periodic lattice of artificial circular pinning sites having different diameters, pinning strengths, and spacings using the time-dependent Ginzburg-Landau formalism. Above some critical DC current density Jc, the vortices depin, and the resulting steady-state motion then induces an oscillatory electric field E (t) with a defect "hopping" frequency f0, which depends on the applied current density and the pinning landscape characteristics. The frequency generated can be locked to an applied AC current density over some range of frequencies, which depends on the amplitude of the DC as well as the AC current densities. Both synchronous and asynchronous collective hopping behaviors are studied as a function of the supercell size of the simulated system and the (asymptotic) synchronization threshold current densities determined.  more » « less
Award ID(s):
1905742
NSF-PAR ID:
10491221
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B: Solid state
Volume:
106
ISSN:
0556-2805
Page Range / eLocation ID:
224516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a generalized Gallium Nitride (GaN) based modular multiport multilevel flying capacitor architecture. In other words, the attractive flying capacitor multilevel (FCML) design and the full-bridge unfolding circuit are employed to develop a multiport multilevel converter architecture that fits various applications. Each module can be designed to contain any combination of AC and DC ports connected through DC-to-DC and DC-to-AC power conversion paths. These conversion paths are FCML topologies that can be designed with any number of levels; the DC-to-AC paths incorporate the full-bridge unfolding circuit. Two example prototypes with open-loop control, three-port and four-port, have verified this generalized architecture. A single module 3 kW three-port four-level prototype with two DC ports and an AC port has achieved a compact size of 11.6 in 3 (4.8 in ×4.3 in × 0.56 in) and a high power density of 258.6 W/in 3 . The three ports are connected through DC-to-AC and DC-to-DC paths that have achieved peak efficiencies of 98.2% and 99.43%, respectively. The total harmonic distortion (THD) of the AC port's voltage and current are 1.26% and 1.23%, respectively. It operates at a high switching frequency of 120 kHz because of the GaN switches and has an actual frequency (inductor's ripple frequency) of 360 kHz thanks to the frequency multiplication effect of the FCML. The four-port prototype contains three DC ports and an AC port and achieved similar high figures of merit. These experimental results of the two prototypes of high efficiency, power density, and compact size are presented in this article and highlight this architecture's promising potential. The choice of the number of modules, ports, and levels depends on the application and its specification; therefore, this proposed generalized structure may serve as a reference design approach for various applications of interest. 
    more » « less
  2. null (Ed.)
    This paper presents a reverse electrowetting-on-dielectric (REWOD) energy harvester integrated with rectifier, boost converter, and charge amplifier that is, without bias voltage, capable of powering wearable sensors for monitoring human health in real-time. REWOD has been demonstrated to effectively generate electrical current at a low frequency range (< 3 Hz), which is the frequency range for various human activities such as walking, running, etc. However, the current generated from the REWOD without external bias source is insufficient to power such motion sensors. In this work, to eventually implement a fully self-powered motion sensor, we demonstrate a novel bias-free REWOD AC generation and then rectify, boost, and amplify the signal using commercial components. The unconditioned REWOD output of 95–240 mV AC is generated using a 50 μL droplet of 0.5M NaCl electrolyte and 2.5 mm of electrode displacement from an oscillation frequency range of 1–3 Hz. A seven-stage rectifier using Schottky diodes having a forward voltage drop of 135–240 mV and a forward current of 1 mA converts the generated AC signal to DC voltage. ∼3 V DC is measured at the boost converter output, proving the system could function as a self-powered motion sensor. Additionally, a linear relationship of output DC voltage with respect to frequency and displacement demonstrates the potential of this REWOD energy harvester to function as a self-powered wearable motion sensor.

     
    more » « less
  3. This paper presents a reverse electrowetting-on-dielectric (REWOD) energy harvester integrated with rectifier, boost converter, and charge amplifier that is, without bias voltage, capable of powering wearable sensors for monitoring human health in real-time. REWOD has been demonstrated to effectively generate electrical current at a low frequency range (<3 Hz), which is the frequency range for various human activities such as walking, running, etc. However, the current generated from the REWOD without external bias source is insufficient to power such motion sensors. In this work, to eventually implement a fully self-powered motion sensor, we demonstrate a novel bias-free REWOD AC generation and then rectify, boost, and amplify the signal using commercial components. The unconditioned REWOD output of 95-240 mV AC is generated using a 50 μL droplet of 0.5M NaCl electrolyte and 2.5 mm of electrode displacement from an oscillation frequency range of 1-3 Hz. A seven-stage rectifier using Schottky diodes having a forward voltage drop of 135-240 mV and a forward current of 1 mA converts the generated AC signal to DC voltage. ~3 V DC is measured at the boost converter output, proving the system could function as a self-powered motion sensor. Additionally, a linear relationship of output DC voltage with respect to frequency and displacement demonstrates the potential of this REWOD energy harvester to function as a self-powered wearable motion sensor. 
    more » « less
  4. Abstract This paper presents a motion-sensing device with the capability of harvesting energy from low-frequency motion activities. Based on the high surface area reverse electrowetting-on-dielectric (REWOD) energy harvesting technique, mechanical modulation of the liquid generates an AC signal, which is modeled analytically and implemented in Matlab and COMSOL. A constant DC voltage is produced by using a rectifier and a DC–DC converter to power up the motion-sensing read-out circuit. A charge amplifier converts the generated charge into a proportional output voltage, which is transmitted wirelessly to a remote receiver. The harvested DC voltage after the rectifier and DC–DC converter is found to be 3.3 V, having a measured power conversion efficiency (PCE) of the rectifier as high as 40.26% at 5 Hz frequency. The energy harvester demonstrates a linear relationship between the frequency of motion and the generated output power, making it highly suitable as a self-powered wearable motion sensor. 
    more » « less
  5. A microscopic understanding of vortex pinning in type II superconductors began with the theoretical discovery of magnetic vortices by Abrikosov, which received the 2003 Nobel Prize in Physics [1, 2]. When type II superconductors are exposed to magnetic fields (H), the magnetic field enters as quantized vortices, each with a fundamental flux j0 = 2.07 × 10−11 T cm−2 , or 2.07 × 10−15 Wb. The vortex core size on the order of the superconducting coherence length can be very small, e.g. ∼1–2 nm for the cuprate family of high-temperature superconductors (HTSs). The vortices electrically interact with each other by repelling, and act collectively together as a flux lattice that is affected by the intrinsic crystal lattice properties and microstructure defects. For superconducting power applications where applied magnetic fields are in the range of 0.1 T to >30 T, the areal number density of the vortices can reach incredibly high values. For example, for an applied magnetic field of 5 T, the vortex areal density is around 2.5 × 1011 cm−2 , which translates to inter-vortex spacing of about 20 nm (assuming a square lattice for vortices). Somewhat surprisingly, if the crystal lattice for type II superconductors, such as HTS cuprates [3] is nearly perfect without any defects to pin vortices, the vortices can move collectively and almost freely in an applied magnetic field due to Lorentz forces, which results in electrical resistance at a fairly low critical current density Jc(H, T) at an applied magnetic field (H) and temperature (T). In order to realize useful critical current densities in type II superconductors, imperfections and defects must be added to the crystal lattice to effectively pin vortices. The simplest example of this was achieved in the (Y, RE)Ba2Cu3O7 (where RE is rare earth elements) family by depositing thin films, in which high densities of dislocations and other growth defects are added into the film microstructure and dramatically increase the critical current density Jc(77 K, H//c-axis) > 106 A cm−2 compared to Jc (77 K) < 103 A cm−2 for single crystals [4–6] 
    more » « less