skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Best-practice guidance for Earth BioGenome Project sample collection and processing: progress and challenges in biodiverse reference genome creation
Abstract The Earth BioGenome Project has the extremely ambitious goal of generating, at scale, high-quality reference genomes across the entire Tree of Life. Currently in its first phase, the project is targeting family-level representatives and is progressing rapidly. Here we outline recommended standards and considerations in sample acquisition and processing for those involved in biodiverse reference genome creation. These standards and recommendations will evolve with advances in related processes. Additionally, we discuss the challenges raised by the ambitions for later phases of the project, highlighting topics related to sample collection and processing that require further development.  more » « less
Award ID(s):
2110053 1846174
PAR ID:
10595059
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
GigaScience
Volume:
14
ISSN:
2047-217X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sample preservation often impedes efforts to generate high-quality reference genomes or pangenomes for Earth’s more than 2 million plant and animal species due to nucleotide degradation. Here we compare the impacts of storage methods including solution type, temperature, and time on DNA quality and Oxford Nanopore long-read sequencing quality in 9 fish and 4 plant species. We show 95% ethanol largely protects against degradation for fish blood (22 °C, ≤6 weeks) and plant tissue (4 °C, ≤3 weeks). From this furthest storage timepoint, we assemble high-quality reference genomes of 3 fish and 2 plant species with contiguity (contig N50) and completeness (BUSCO) that achieve the Vertebrate Genome Project benchmarking standards. For epigenetic applications, we also report methylation frequency compared to liquid nitrogen control. The results presented here remove the necessity for cryogenic storage in many long read applications and provide a framework for future studies focused on sampling in remote locations, which may represent a large portion of the future sequencing of novel organisms. 
    more » « less
  2. Abstract Increased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth‐system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Δ47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of δ47and Δ47values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Δ47(I‐CDES) values for Intercarb‐Carbon Dioxide Equilibrium Scale. 
    more » « less
  3. A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met. 
    more » « less
  4. RationaleBack‐side thinning of wafers is used to eliminate issues with transient sputtering when analyzing near‐surface element distributions. Precise and accurate calibrated implants are created by including a standard reference material during the implantation. Combining these methods allows accurate analysis of low‐fluence, shallow features even if matrix effects are a concern. MethodsImplanted Na (<2.0 × 1011ions/cm2, peaking <50 nm) in diamond‐like carbon (DLC) film on silicon (solar wind returned by NASA's Genesis mission) was prepared for measurement as follows. Implanted surfaces of samples were epoxied to wafers and back‐side‐thinned using physical or chemical methods. Thinned samples were then implanted with reference ions for accurate quantification of the solar wind implant. Analyses used a CAMECA IMS 7f‐GEO SIMS in depth‐profiling mode. ResultsBack‐side‐implanted reference ions reduced the need to change sample mounts or stage position and could be spatially separated from the solar wind implant even when measuring monoisotopic ions. Matrix effects in DLC were mitigated and the need to find an identical piece of DLC for a reference implant was eliminated. Accuracy was only limited by the back‐side technique itself. ConclusionsCombining back‐side depth profiling with back‐side‐implanted internal standards aides quantification of shallow mono‐ and polyisotopic implants. This technique helps mitigate matrix effects and keeps measurement conditions consistent. Depth profile acquisition times are longer, but if sample matrices are homogeneous, procedural changes can decrease measurement times. 
    more » « less
  5. RationaleA major hurdle in identifying chemicals in mass spectrometry experiments is the availability of tandem mass spectrometry (MS/MS) reference spectra in public databases. Currently, scientists purchase databases or use public databases such as Global Natural Products Social Molecular Networking (GNPS). The MSMS‐Chooser workflow is an open‐source protocol for the creation of MS/MS reference spectra directly in the GNPS infrastructure. MethodsAn MSMS‐Chooser Sample Template is provided and completed manually. The MSMS‐Chooser Submission File and Sequence Table for data acquisition were programmatically generated. Standards from the Mass Spectrometry Metabolite Library (MSMLS) suspended in a methanol–water (1:1) solution were analyzed. Flow injection on an LC/MS/MS system was used to generate negative and positive mode data using data‐dependent acquisition. The MS/MS spectra and Submission File were uploaded to MSMS‐Chooser workflow in GNPS for automatic selection of MS/MS spectra. ResultsData acquisition and processing required ~2 h and ~2 min, respectively, per 96‐well plate using MSMS‐Chooser. Analysis of the MSMLS, over 600 small molecules, using MSMS‐Chooser added 889 spectra (including multiple adducts) to the public library in GNPS. Manual validation of one plate indicated accurate selection of MS/MS scans (true positive rate of 0.96 and a true negative rate of 0.99). The MSMS‐Chooser output includes a table formatted for inclusion in the GNPS library as well as the ability to directly launch searches via MASST. ConclusionsMSMS‐Chooser enables rapid data acquisition, data analysis (selection of MS/MS spectra), and a formatted table for inspection and upload to GNPS. Open file‐format data (.mzML or.mzXML) from most mass spectrometry platforms containing MS/MS spectra can be processed using MSMS‐Chooser. MSMS‐Chooser democratizes the creation of MS/MS reference spectra in GNPS which will improve annotation and strengthen the tools which use the annotation information. 
    more » « less