skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High spin polarization and spin signal enhancement in non-local spin valves with Co–Fe alloy injectors and detectors
For applications such as spin accumulation sensors for next-generation hard disk drive read heads, and for fundamental research, it is desirable to increase the spin signal in metallic non-local spin valves, which are central devices in spintronics. To this end, here, we report on the integration of high-spin-polarization Co–Fe binary alloy ferromagnetic injectors and detectors in Al-based non-local spin valves. Room-temperature deposition on amorphous substrates from an alloy target is shown to generate smooth, polycrystalline (110-textured), solid-solution body-centered-cubic Co75Fe25 films, which we characterize by energy dispersive x-ray spectroscopy, x-ray diffraction, x-ray reflectivity, atomic force microscopy, and electronic transport. Simple integration into transparent-interface Al non-local spin valves is then shown to realize up to a factor of ∼5 enhancement of the spin signal relative to Co, with full quantitative analysis yielding strikingly temperature-independent current spin polarizations exceeding 60%. We make a detailed quantitative comparison of these values with prior literature, concluding that Co–Fe alloys present a remarkably facile route to higher spin polarization and spin signals in non-local spin valves, with minimal barrier to adoption.  more » « less
Award ID(s):
2103711 2011401
PAR ID:
10595132
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
11
Issue:
5
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We have carried out a combined theoretical and experimental investigation of FeCrVAl, and the effect of Mn and Co doping on its structural, magnetic, and electronic band properties. Our first principles calculations indicate that FeCrVAl, FeCr 0.5 Mn 0.5 VAl, and FeCr 0.5 Co 0.5 VAl exhibit nearly perfect spin polarization, which may be further enhanced by mechanical strain. At the same time, FeCrV 0.5 Mn 0.5 Al and FeCrV 0.5 Co 0.5 Al exhibit a relatively small value of spin polarization, making them less attractive for practical applications. Using arc melting and high vacuum annealing, we synthesized three compounds FeCrVAl, FeCr 0.5 Mn 0.5 VAl, and FeCr 0.5 Co 0.5 VAl, which are predicted to exhibit high spin polarization. The room temperature x-ray diffraction patterns of all samples are fitted with full B2 type disorder with a small amount of FeO 2 secondary phase. All samples show very small saturation magnetizations at room temperature. The thermomagnetic curves M(T) of FeCrVAl and FeCr 0.5 Co 0.5 VAl are similar to that of a paramagnetic material, whereas that of FeCr 0.5 Mn 0.5 VAl indicates ferrimagnetic behavior with the Curie temperature of 135 K. Our findings may be of interest for researchers working on Heusler compounds for spin-based electronic applications. 
    more » « less
  2. Abstract Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle. 
    more » « less
  3. The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2}2(bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find that orbital moment diminishes with increasing temperature, relative to the spin moment in the vicinity of room temperature. 
    more » « less
  4. The non-local spin valve (NLSV) is a useful device for studying spin transport at nanoscopic dimensions, with potential technological applications. Despite this appeal, background signals, unrelated to spin diffusion, often hinder the interpretation of spin signals in NLSVs and could compromise performance in future devices. In this paper, we comprehensively investigate these background signals in all-metallic NLSVs fabricated from a variety of ferromagnetic (FM; N i 80 F e 20 , Fe, Co) and nonmagnetic (NM; Al, Cu) metals. We demonstrate that a background signal emerges in AC measurements, with contributions from both current spreading and thermoelectric effects, with a complex dependence on both temperature and FM injector-detector separation. Despite the complexity of these dependencies, we demonstrate excellent agreement with three-dimensional finite-element modelling that accounts for current-spreading and thermoelectric effects, across a wide range of temperatures, FM separations, and FM/NM pairings. This approach additionally offers a means to estimate the Seebeck coefficients for the tested FM/NM pairings, providing further insight into the charge and heat flow in such nanoscopic spintronic devices. Published by the American Physical Society2024 
    more » « less
  5. null (Ed.)
    For the spin crossover coordination polymer [Fe(L1)(bipy)] n (where L1 is a N 2 O 2 2− coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4′-bipyridine), there is compelling additional evidence of a spin state transition. Both Fe 2p X-ray absorption and X-ray core level photoemission spectroscopies confirm that a spin crossover takes place, as observed by magnetometry. Yet the details of the temperature dependent changes of the spin state inferred from both X-ray absorption and X-ray core level photoemission, differ from magnetometry, particularly with regard to the apparent critical transition temperatures and the cooperative nature of the curve progression in general. Comparing the experimental spin crossover data to Ising model simulations, a transition activation energy in the region of 160 to 175 meV is indicated, along with a nonzero exchange J . Overall, the implication is that there may be perturbations to the bistability of spin states, that are measurement dependent or that the surface differs from the bulk with regard to the cooperative effects observed upon spin transition. 
    more » « less