skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hyperfiniteness for group actions on trees
We identify natural conditions for a countable group acting on a countable tree which imply that the orbit equivalence relation of the induced action on the Gromov boundary is Borel hyperfinite. Examples of this condition include acylindrical actions. We also identify a natural weakening of the aforementioned conditions that implies measure hyperfiniteness of the boundary action. We then document examples of group actions on trees whose boundary action is not hyperfinite.  more » « less
Award ID(s):
2350049
PAR ID:
10595184
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A long-standing open problem in the theory of hyperfinite equivalence relations asks if the orbit equivalence relation generated by a Borel action of a countable amenable group is hyperfinite. In this paper we prove that this question always has a positive answer when the acting group is polycyclic, and we obtain a positive answer for all free actions of a large class of solvable groups including the Baumslag–Solitar group BS(1, 2) and the lamplighter group Z2 ≀ Z. This marks the first time that a group of exponential volume-growth has been verified to have this property. In obtaining this result we introduce a new tool for studying Borel equivalence relations by extending Gromov’s notion of asymptotic dimension to the Borel setting. We show that countable Borel equivalence relations of finite Borel asymptotic dimension are hyperfinite, and more generally we prove under a mild compatibility assumption that increasing unions of such equivalence relations are hyperfinite. As part of our main theorem, we prove for a large class of solvable groups that all of their free Borel actions have finite Borel asymptotic dimension (and finite dynamic asymptotic dimension in the case of a continuous action on a zero dimensional space). We also provide applications to Borel chromatic numbers, Borel and continuous Følner tilings, topological dynamics, and C∗-algebras. 
    more » « less
  2. A sofic approximation to a countable group is a sequence of partial actions on finite sets that asymptotically approximates the action of the group on itself by left-translations. A group is sofic if it admits a sofic approximation. Sofic entropy theory is a generalization of classical entropy theory in dynamics to actions by sofic groups. However, the sofic entropy of an action may depend on a choice of sofic approximation. All previously known examples showing this dependence rely on degenerate behavior. This paper exhibits an explicit example of a mixing subshift of finite type with two different positive sofic entropies. The example is inspired by statistical physics literature on 2-colorings of random hyper-graphs. 
    more » « less
  3. A bstract We undertake a general study of the boundary (or edge) modes that arise in gauge and gravitational theories defined on a space with boundary, either asymptotic or at finite distance, focusing on efficient techniques for computing the corresponding boundary action. Such actions capture all the dynamics of the system that are implied by its asymptotic symmetry group, such as correlation functions of the corresponding conserved currents. Working in the covariant phase space formalism, we develop a collection of approaches for isolating the boundary modes and their dynamics, and illustrate with various examples, notably AdS 3 gravity (with and without a gravitational Chern-Simons terms) subject to assorted boundary conditions. 
    more » « less
  4. null (Ed.)
    Kolmogorov–Sinai entropy is an invariant of measure-preserving actions of the group of integers that is central to classification theory. There are two recently developed invariants, sofic entropy and Rokhlin entropy, that generalize classical entropy to actions of countable groups. These new theories have counterintuitive properties such as factor maps that increase entropy. This survey article focusses on examples, many of which have not appeared before, that highlight the differences and similarities with classical theory. 
    more » « less
  5. We study the Bowditch boundaries of relatively hyperbolic group pairs, focusing on the case where there are no cut points. We show that if (G,P) is a rigid relatively hyperbolic group pair whose boundary embeds in S2, then the action on the boundary extends to a convergence group action on S2. More generally, if the boundary is connected and planar with no cut points, we show that every element of P is virtually a surface group. This conclusion is consistent with the conjecture that such a group G is virtually Kleinian. We give numerous examples to show the necessity of our assumptions 
    more » « less