skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 6, 2026

Title: Projected iterated Tikhonov in general form with adaptive choice of the regularization parameter
Abstract Tikhonov regularization is commonly used in the solution of linear discrete ill-posed problems. It is known that iterated Tikhonov regularization often produces approximate solutions of higher quality than (standard) Tikhonov regularization. This paper discusses iterated Tikhonov regularization for large-scale problems with a general regularization matrix. Specifically, the original problem is reduced to small size by application of a fairly small number of steps of the Arnoldi or Golub-Kahan processes, and iterated Tikhonov is applied to the reduced problem. The regularization parameter is determined by using an extension of a technique first described by Donatelli and Hanke for quite special coefficient matrices. Convergence of the method is established and computed examples illustrate its performance.  more » « less
Award ID(s):
2038118 2410699
PAR ID:
10595256
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Numerical Algorithms
ISSN:
1017-1398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this article, we exploit the similarities between Tikhonov regularization and Bayesian hierarchical models to propose a regularization scheme that acts like a distributed Tikhonov regularization where the amount of regularization varies from component to component, and a computationally efficient numerical scheme that is suitable for large-scale problems. In the standard formulation, Tikhonov regularization compensates for the inherent ill-conditioning of linear inverse problems by augmenting the data fidelity term measuring the mismatch between the data and the model output with a scaled penalty functional. The selection of the scaling of the penalty functional is the core problem in Tikhonov regularization. If an estimate of the amount of noise in the data is available, a popular way is to use the Morozov discrepancy principle, stating that the scaling parameter should be chosen so as to guarantee that the norm of the data fitting error is approximately equal to the norm of the noise in the data. A too small value of the regularization parameter would yield a solution that fits to the noise (too weak regularization) while a too large value would lead to an excessive penalization of the solution (too strong regularization). In many applications, it would be preferable to apply distributed regularization, replacing the regularization scalar by a vector valued parameter, so as to allow different regularization for different components of the unknown, or for groups of them. Distributed Tikhonov-inspired regularization is particularly well suited when the data have significantly different sensitivity to different components, or to promote sparsity of the solution. The numerical scheme that we propose, while exploiting the Bayesian interpretation of the inverse problem and identifying the Tikhonov regularization with the maximum a posteriori estimation, requires no statistical tools. A clever combination of numerical linear algebra and numerical optimization tools makes the scheme computationally efficient and suitable for problems where the matrix is not explicitly available. Moreover, in the case of underdetermined problems, passing through the adjoint formulation in data space may lead to substantial reduction in computational complexity. 
    more » « less
  2. Abstract Discrete ill‐posed inverse problems arise in many areas of science and engineering. Their solutions are very sensitive to perturbations in the data. Regularization methods aim at reducing this sensitivity. This article considers an iterative regularization method, based on iterated Tikhonov regularization, that was proposed in M. Donatelli and M. Hanke, Fast nonstationary preconditioned iterative methods for ill‐posed problems, with application to image deblurring,Inverse Problems, 29 (2013), Art. 095008, 16 pages. In this method, the exact operator is approximated by an operator that is easier to work with. However, the convergence theory requires the approximating operator to be spectrally equivalent to the original operator. This condition is rarely satisfied in practice. Nevertheless, this iterative method determines accurate image restorations in many situations. We propose a modification of the iterative method, that relaxes the demand of spectral equivalence to a requirement that is easier to satisfy. We show that, although the modified method is not an iterative regularization method, it maintains one of the most important theoretical properties for this kind of methods, namely monotonic decrease of the reconstruction error. Several computed experiments show the good performances of the proposed method. 
    more » « less
  3. This paper presents a regularization framework that aims to improve the fidelity of Tikhonov inverse solutions. At the heart of the framework is the data-informed regularization idea that only data-uninformed parameters need to be regularized, while the data-informed parameters, on which data and forward model are integrated, should remain untouched. We propose to employ the active subspace method to determine the data-informativeness of a parameter. The resulting framework is thus called a data-informed (DI) active subspace (DIAS) regularization. Four proposed DIAS variants are rigorously analyzed, shown to be robust with the regularization parameter and capable of avoiding polluting solution features informed by the data. They are thus well suited for problems with small or reasonably small noise corruptions in the data. Furthermore, the DIAS approaches can effectively reuse any Tikhonov regularization codes/libraries. Though they are readily applicable for nonlinear inverse problems, we focus on linear problems in this paper in order to gain insights into the framework. Various numerical results for linear inverse problems are presented to verify theoretical findings and to demonstrate advantages of the DIAS framework over the Tikhonov, truncated SVD, and the TSVD-based DI approaches. 
    more » « less
  4. l1 regularization is used to preserve edges or enforce sparsity in a solution to an inverse problem. We investigate the split Bregman and the majorization-minimization iterative methods that turn this nonsmooth minimization problem into a sequence of steps that include solving an -regularized minimization problem. We consider selecting the regularization parameter in the inner generalized Tikhonov regularization problems that occur at each iteration in these iterative methods. The generalized cross validation method and chi2 degrees of freedom test are extended to these inner problems. In particular, for the chi2 test this includes extending the result for problems in which the regularization operator has more rows than columns and showing how to use the -weighted generalized inverse to estimate prior information at each inner iteration. Numerical experiments for image deblurring problems demonstrate that it is more effective to select the regularization parameter automatically within the iterative schemes than to keep it fixed for all iterations. Moreover, an appropriate regularization parameter can be estimated in the early iterations and fixed to convergence. 
    more » « less
  5. Abstract In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization plays a key role in translating the data assimilation problem into an optimization problem. Then the existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the finite-element method for spatial discretization and backward Euler method for the temporal discretization. Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and the discrete data assimilation problems for the second-order parabolic interface equation. The convergence and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three iterative methods, which decouple the optimality system and significantly save computational cost, are developed to solve the discrete time evolution optimality system. Finally, numerical results are provided to validate the proposed method. 
    more » « less