skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DIAS: A Data-Informed Active Subspace Regularization Framework for Inverse Problems
This paper presents a regularization framework that aims to improve the fidelity of Tikhonov inverse solutions. At the heart of the framework is the data-informed regularization idea that only data-uninformed parameters need to be regularized, while the data-informed parameters, on which data and forward model are integrated, should remain untouched. We propose to employ the active subspace method to determine the data-informativeness of a parameter. The resulting framework is thus called a data-informed (DI) active subspace (DIAS) regularization. Four proposed DIAS variants are rigorously analyzed, shown to be robust with the regularization parameter and capable of avoiding polluting solution features informed by the data. They are thus well suited for problems with small or reasonably small noise corruptions in the data. Furthermore, the DIAS approaches can effectively reuse any Tikhonov regularization codes/libraries. Though they are readily applicable for nonlinear inverse problems, we focus on linear problems in this paper in order to gain insights into the framework. Various numerical results for linear inverse problems are presented to verify theoretical findings and to demonstrate advantages of the DIAS framework over the Tikhonov, truncated SVD, and the TSVD-based DI approaches.  more » « less
Award ID(s):
1808576 1845799
PAR ID:
10354752
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computation
Volume:
10
Issue:
3
ISSN:
2079-3197
Page Range / eLocation ID:
38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this article, we exploit the similarities between Tikhonov regularization and Bayesian hierarchical models to propose a regularization scheme that acts like a distributed Tikhonov regularization where the amount of regularization varies from component to component, and a computationally efficient numerical scheme that is suitable for large-scale problems. In the standard formulation, Tikhonov regularization compensates for the inherent ill-conditioning of linear inverse problems by augmenting the data fidelity term measuring the mismatch between the data and the model output with a scaled penalty functional. The selection of the scaling of the penalty functional is the core problem in Tikhonov regularization. If an estimate of the amount of noise in the data is available, a popular way is to use the Morozov discrepancy principle, stating that the scaling parameter should be chosen so as to guarantee that the norm of the data fitting error is approximately equal to the norm of the noise in the data. A too small value of the regularization parameter would yield a solution that fits to the noise (too weak regularization) while a too large value would lead to an excessive penalization of the solution (too strong regularization). In many applications, it would be preferable to apply distributed regularization, replacing the regularization scalar by a vector valued parameter, so as to allow different regularization for different components of the unknown, or for groups of them. Distributed Tikhonov-inspired regularization is particularly well suited when the data have significantly different sensitivity to different components, or to promote sparsity of the solution. The numerical scheme that we propose, while exploiting the Bayesian interpretation of the inverse problem and identifying the Tikhonov regularization with the maximum a posteriori estimation, requires no statistical tools. A clever combination of numerical linear algebra and numerical optimization tools makes the scheme computationally efficient and suitable for problems where the matrix is not explicitly available. Moreover, in the case of underdetermined problems, passing through the adjoint formulation in data space may lead to substantial reduction in computational complexity. 
    more » « less
  2. null (Ed.)
    Abstract Randomized methods can be competitive for the solution of problems with a large matrix of low rank. They also have been applied successfully to the solution of large-scale linear discrete ill-posed problems by Tikhonov regularization (Xiang and Zou in Inverse Probl 29:085008, 2013). This entails the computation of an approximation of a partial singular value decomposition of a large matrix A that is of numerical low rank. The present paper compares a randomized method to a Krylov subspace method based on Golub–Kahan bidiagonalization with respect to accuracy and computing time and discusses characteristics of linear discrete ill-posed problems that make them well suited for solution by a randomized method. 
    more » « less
  3. Abstract Tikhonov regularization is commonly used in the solution of linear discrete ill-posed problems. It is known that iterated Tikhonov regularization often produces approximate solutions of higher quality than (standard) Tikhonov regularization. This paper discusses iterated Tikhonov regularization for large-scale problems with a general regularization matrix. Specifically, the original problem is reduced to small size by application of a fairly small number of steps of the Arnoldi or Golub-Kahan processes, and iterated Tikhonov is applied to the reduced problem. The regularization parameter is determined by using an extension of a technique first described by Donatelli and Hanke for quite special coefficient matrices. Convergence of the method is established and computed examples illustrate its performance. 
    more » « less
  4. In this paper, we consider iterative methods based on sampling for computing solutions to separable nonlinear inverse problems where the entire dataset cannot be accessed or is not available all-at-once. In such scenarios (e.g., when massive amounts of data exceed memory capabilities or when data is being streamed), solving inverse problems, especially nonlinear ones, can be very challenging. We focus on separable nonlinear problems, where the objective function is nonlinear in one (typically small) set of parameters and linear in another (larger) set of parameters. For the linear problem, we describe a limited-memory sampled Tikhonov method, and for the nonlinear problem, we describe an approach to integrate the limited-memory sampled Tikhonov method within a nonlinear optimization framework. The proposed method is computationally efficient in that it only uses available data at any iteration to update both sets of parameters. Numerical experiments applied to massive super-resolution image reconstruction problems show the power of these methods. 
    more » « less
  5. N/A (Ed.)
    Abstract Partial differential equation (PDE)-constrained inverse problems are some of the most challenging and computationally demanding problems in computational science today. Fine meshes required to accurately compute the PDE solution introduce an enormous number of parameters and require large-scale computing resources such as more processors and more memory to solve such systems in a reasonable time. For inverse problems constrained by time-dependent PDEs, the adjoint method often employed to compute gradients and higher order derivatives efficiently requires solving a time-reversed, so-called adjoint PDE that depends on the forward PDE solution at each timestep. This necessitates the storage of a high-dimensional forward solution vector at every timestep. Such a procedure quickly exhausts the available memory resources. Several approaches that trade additional computation for reduced memory footprint have been proposed to mitigate the memory bottleneck, including checkpointing and compression strategies. In this work, we propose a close-to-ideal scalable compression approach using autoencoders to eliminate the need for checkpointing and substantial memory storage, thereby reducing the time-to-solution and memory requirements. We compare our approach with checkpointing and an off-the-shelf compression approach on an earth-scale ill-posed seismic inverse problem. The results verify the expected close-to-ideal speedup for the gradient and Hessian-vector product using the proposed autoencoder compression approach. To highlight the usefulness of the proposed approach, we combine the autoencoder compression with the data-informed active subspace (DIAS) prior showing how the DIAS method can be affordably extended to large-scale problems without the need for checkpointing and large memory. 
    more » « less