skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: James Buttle Review: Bed, Banks and Beyond: River Flood Dynamics
Floods are amplified and attenuated by features and processes across spatial scales, defined here as flood dynamics. We review and synthesise these influences at the catchment, river network and reach scales as a means of integrating understanding of controls on flood dynamics and identifying key questions that arise because of differences in techniques of investigation and disciplinary emphases between spatial scales. Catchment‐scale influences include catchment area, topography, lithology, land cover, precipitation, antecedent conditions and human alterations such as changing land cover. Network‐scale influences on flood dynamics include network topology, longitudinal variations in the geometry of successive river corridor reaches, lakes and wetlands and human alterations including flow regulation and cumulative changes in channel‐floodplain connectivity in multiple reaches across a network. Reach‐scale influences on flood dynamics include water sources, river corridor geometry and connectivity and human alterations such as artificial levees, channelisation, bank stabilisation, changes to floodplain land cover and drainage, dike operation, process‐based river restoration and urban stormwater management. Our review and synthesis of relevant literature suggest that the relative importance of these multiple influences on flood dynamics varies across spatial scales. Hillslope response may dominate hydrograph characteristics in smaller catchments, for example, whereas network geometry and flow dynamics exert progressively stronger influences on flood dynamics with increasing catchment size. Scale‐specific advances in understanding flood dynamics, including rainfall‐runoff analyses of water movements from uplands into channel networks (catchment‐scale), analyses of flow dynamics along networks of multiple channel reaches (network‐scale) and investigations of biophysical feedbacks and the influences of river corridor geometry and hydraulic roughness (reach‐scale), have largely contributed to understanding flood dynamics, but there remain important disconnects between these diverse bodies of research and outstanding questions related to the cumulative effects on flood dynamics across scales.  more » « less
Award ID(s):
2142761
PAR ID:
10595298
Author(s) / Creator(s):
; ;
Publisher / Repository:
Hydrological Processes
Date Published:
Journal Name:
Hydrological Processes
Volume:
39
Issue:
4
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High‐resolution topography reveals that floodplains along meandering rivers in Indiana commonly contain intermittently flowing channel networks. We investigated how the presence of floodplain channels affects lateral surface‐water connectivity between a river and floodplain (specifically exchange flux and timescales of transport) as a function of flow stage in a low‐gradient river‐floodplain system. We constructed a two‐dimensional, surface‐water hydrodynamic model using Hydrologic Engineering Center's River Analysis System (HEC‐RAS) 2D along 32 km of floodplain (56 km along the river) of the East Fork White River near Seymour, Indiana, USA, using lidar elevation data and surveyed river bathymetry. The model was calibrated using land‐cover specific roughness to elevation‐discharge data from a U.S. Geological Survey gage and validated against high‐water marks, an aerial photo showing the spatial extent of floodplain inundation, and measured flow velocities. Using the model results, we analyzed the flow in the river, spatial patterns of inundation, flow pathways, river‐floodplain exchange, and water residence time on the floodplain. Our results highlight that bankfull flow is an oversimplified concept for explaining river‐floodplain connectivity because some stream banks are overtopped and major low‐lying floodplain channels are inundated roughly 19 days per year. As flow increased, inundation of floodplain channels at higher elevations dissected the floodplain, until the floodplain channels became fully inundated. Additionally, we found that river‐floodplain exchange was driven by bank height or channel orientation depending on flow conditions. We propose a conceptual model of river‐floodplain connectivity dynamics and developed metrics to analyze quantitatively complex river‐floodplain systems. 
    more » « less
  2. Abstract The elevation of natural river levees can vary considerably along the length of a river, and low‐lying features such as secondary floodplain channels allow for hydrologic exchange between a river and its floodplain over a range of discharges. This hydrologic, “river‐floodplain connectivity” plays a role in attenuating flood waves and transporting fluvial material to floodplain ecosystems. However, flood wave attenuation and transport are also limited by the available storage provided by floodplains. In this study, we explore the combined controls of river‐floodplain connectivity and floodplain width on flood wave attenuation and transport, and how those controls change as flood magnitude increases. We develop idealized river‐floodplain models based on the geometry of the lower Trinity River in Texas, USA, varying floodplain width, peak discharge, and degree of river‐floodplain connectivity, which we prescribe by varying the width of a secondary channel connecting the river to the floodplain. We show that attenuation transitions from connectivity‐limited to storage‐limited as discharge increases. Secondary channel conveyance allows for floodplain inundation at lower discharges, but also fills the floodplain faster and, for larger floods, can cause higher flood peaks downstream. Greater secondary channel conveyance and wider floodplains increase fluxes to the floodplain, but secondary conveyance allows the floodplain to drain faster while wider floodplains have longer average residence times. This study presents a framework for understanding how secondary channel conveyance and floodplain width combine to modulate lateral flow exchange, residence times, and flood wave attenuation, and can guide successful management of river systems and future restoration efforts. 
    more » « less
  3. Abstract Sediment regimes, i.e., the processes that recruit, transport, and store sediment, create the physical habitats that underpin river‐floodplain ecosystems. Natural and human‐induced disturbances that alter sediment regimes can have cascading effects on river and floodplain morphology, ecosystems, and a river's ability to provide ecosystem services, yet prediction of the response of sediment dynamics to disturbance is challenging. We developed the Sediment Routing and Floodplain Exchange (SeRFE) model, which is a network‐based, spatially explicit framework for modeling sediment recruitment to and subsequent transport through drainage networks. SeRFE additionally tracks the spatially and temporally variable balance between sediment supply and transport capacity. Simulations using SeRFE can account for various types of watershed disturbance and for channel‐floodplain sediment exchange. SeRFE is simple, adaptable, and can be run with widely available geospatial data and limited field data. The model is driven by real or user‐generated hydrographs, allowing the user to assess the combined effects of disturbance, channel‐floodplain interactions and particular flow scenarios on the propagation of disturbances throughout a drainage network, and the resulting impacts to reaches of interest. We tested the model in the Santa Clara River basin, Southern California, in subbasins affected by large dams and wildfire. Model results highlight the importance of hydrologic conditions on postwildfire sediment yield and illustrate the spatial extent of dam‐induced sediment deficit during a flood. SeRFE can provide contextual information on reach‐scale sediment balance conditions, sensitivity to altered sediment regimes, and potential for morphologic change for managers and practitioners working in disturbed watersheds. 
    more » « less
  4. ABSTRACT Floodplains along low‐gradient, meandering river systems contain diverse hydrogeomorphic features, ranging from isolated depressions to hydrologically‐connected channels. These ephemerally‐flooded features inundate prior to river water overtopping all banks, enhancing river‐floodplain connectivity during moderately high flow stages. Predicting when and where ecological functions occur in floodplains requires understanding the dynamic hydrologic processes of hydrogeomorphic features, including inundation and exchange. In this study, we examined storm event‐scale inundation and exchange dynamics along a lowland, meandering river system in central Illinois (USA). We monitored surface water presence/absence, surface water level, and groundwater level across floodplain hydrogeomorphic feature types (i.e., isolated depression, backwater channel, and flow‐through channel). Using these data, we evaluated inundation onset and recession characteristics, drivers of groundwater‐surface water interactions, and direction of hydrologic exchange with the river channel. Surface water presence/absence patterns suggested inundation onset timescales were primarily controlled by microtopography and recession timescales were correlated with floodplain elevation. Employing a novel hysteresis approach for characterising groundwater‐surface water interactions, we observed distinct patterns indicating differences in water sources across hydrogeomorphic units and event characteristics. Finally, differences in hydraulic head along floodplain channels revealed that channels with multiple inlets/outlets (i.e., flow‐through channels) conveyed down‐valley flow and channels with single inlets primarily functioned as sinks of river‐derived water to the floodplain with short source periods. These results highlight the heterogeneity of hydrologic processes that occur along lowland, meandering river‐floodplains, and more specifically, point to the important role hydrogeomorphic features play in controlling dynamic connectivity within the river corridor. 
    more » « less
  5. Identifying the origins of storm fluvial particulate organic carbon (POC) provides information about the hydrological connectivity within the river corridor and the roles of the land-stream interface in the carbon cycle. However, current understanding of storm-induced POC source dynamics is constrained by observations limited in space and time. This study presents a unique approach integrating higher spatial and temporal resolution sampling with a multi-biomarker analysis to better understand POC source dynamics across scales. Storm POC samples were collected at ~2 h intervals at three locations along the flow trajectory of an agricultural stream during six storm events with varied storm characteristics and seasonality, and characterized for their concentrations, C and N contents, stable C isotopes, and biomarker contents. Our results showed a source transition from in-stream algal production during early storm stages to surface soils with vascular plant signatures during peak precipitation and discharge across events and stations. Biomarkers further resolved the terrestrial signature into one likely from bank vegetation and another from row crop soils. This additional separation appeared conditionally, with the magnitude and sequence influenced by environmental factors such as storm trajectory, antecedent conditions, and management/vegetation cover. Source transitions were less distinctive in the lower reaches due to the greater integration of inputs, although one storm with localized precipitation showed the opposite pattern. Both scenarios align with the expected lower hydrological connectivity downstream. With the employed approach, the evolution of the storm pulse POC as it responds to river corridor processes could be visualized both temporally and spatially. 
    more » « less