skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Guest removal from ring-banded guanidinium organosulfonate hydrogen-bonded frameworks
Crystalline fibers of the hydrogen-bonded framework bis(guanidinium) naphthalene-1,5-disulfonate, (G)2(1,5-NDS), with ethanol guest molecules twist as they grow when deposited from solution under conditions that favor low nucleation densities and high branching rates. Spherulites comprising helicoidal fibers with a pitch of 3.4 ± 0.5 μm display rhythmic concentric variations in interference colors between crossed polarizers. Tightly packed fibers and platelets, systematically change orientations between flat-on and edge-on crystallites with respect to the substrate surface. Mueller matrix imaging reveals periodic oscillations in the absolute magnitude of the linear retardance and an associated bisignate circular retardance. Single-crystal X-ray diffraction data demonstrates that the twisted (G)2(1,5-NDS)⊃EtOH crystals adopt a bilayer packing motif with ethanol as guest molecules (space group P1 ̅). When the banded spherulite films were subsequently heated at 130°C, the solvated phase was converted to a guest-free crystalline phase (space group P21/c). This transition resulted in loss of linear retardance.  more » « less
Award ID(s):
2002964
PAR ID:
10595319
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Nanoscale
ISSN:
2040-3364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The title complexes, (η 4 -cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 5 H 8 N 2 ) 2 (C 8 H 12 )]I, ( 1 ) and (η 4 -cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 7 H 12 N 2 ) 2 (C 8 H 12 )]I, ( 2 ), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid L-proline to [Ir(COD)(IMe) 2 ]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C 2/ m , while 2 crystallizes in the orthorhombic space group Pccn , both with Z = 4. 
    more » « less
  2. Abstract Herein we report the use of tetrakis (guanidinium) pyrenetetrasulfonate (G4PYR) and bis (guanidinium) 1,5‐napthalene disulfonate (G2NDS) to catalyze the cyclization of 2‐cyanobenzamide (1) to isoindolone (2). Moreover, we demonstrate the remarkable selectivity of these guanidinium organosulfonate hosts in encapsulating2over1. By thoroughly investigating the intramolecular cyclization reaction, we determined that guanidinium and the organosulfonate moiety acts as the catalyst in this process. Additionally,2is selectively encapsulated, even in mixtures of other structurally similar heterocycles like indole. Furthermore, the tautomeric state of2(amino isoindolone (2–A) and imino isoindolinone forms (2–I)) can be controlled by utilizing different guanidinium organosulfonate frameworks. 
    more » « less
  3. Abstract Oxygen-containing complex organic molecules are key precursors to biorelevant compounds fundamental for the origins of life. However, the untangling of their interstellar formation mechanisms has just scratched the surface, especially for oxygen-containing cyclic molecules. Here, we present the first laboratory simulation experiments featuring the formation of all three C2H4O isomers—ethylene oxide (c–C2H4O), acetaldehyde (CH3CHO), and vinyl alcohol (CH2CHOH)—in low-temperature model interstellar ices composed of carbon monoxide (CO) and ethanol (C2H5OH). Ice mixtures were exposed to galactic cosmic-ray proxies with an irradiation dose equivalent to a cold molecular cloud aged (7 ± 2) × 105yr. These biorelevant species were detected in the gas phase through isomer-selective photoionization reflectron time-of-flight mass spectrometry during temperature-programmed desorption. Isotopic labeling experiments reveal that ethylene oxide is produced from ethanol alone, providing the first experimental evidence to support the hypothesis that ethanol serves as a precursor to the prototype epoxide in interstellar ices. These findings reveal feasible pathways for the formation of all three C2H4O isomers in ethanol-rich interstellar ices, offering valuable constraints on astrochemical models for their formation. Our results suggest that ethanol is a critical precursor to C2H4O isomers in interstellar environments, representing a critical step toward unraveling the formation mechanisms of oxygen-containing cyclic molecules, aldehydes, and their enol tautomers from alcohols in interstellar ices. 
    more » « less
  4. We study the nonlinear $$\sigma$$-model in $${(d+1)}$$-dimensional spacetime with connected target space $$K$$ and show that, at energy scales below singular field comfigurations (such as vortices), it has an emergent non-invertible higher symmetry. The symmetry defects of the emergent symmetry are described by the $$d$$-representations of a discrete $$d$$-group $$\mathbb{G}^{(d)}$$ (i.e. the emergent symmetry is the dual of the invertible $$d$$-group $$\mathbb{G}^{(d)}$$ symmetry). The $$d$$-group $$\mathbb{G}^{(d)}$$ is determined such that its classifying space $$B\mathbb{G}^{(d)}$$ is given by the $$d$$-th Postnikov stage of $$K$$. In $(2+1)$D and for finite $$\mathbb{G}^{(2)}$$, this symmetry is always holo-equivalent to an invertible $${0}$$-form---ordinary---symmetry with potential 't Hooft anomaly. The singularity-free disordered phase of the nonlinear $$\sigma$$-model spontaneously breaks this symmetry, and when $$\mathbb{G}^{(d)}$$ is finite, it is described by the deconfined phase of $$\mathbb{G}^{(d)}$$ higher gauge theory. We consider examples of such disordered phases. We focus on a singularity-free $S^2$ nonlinear $$\sigma$$-model in $${(3+1)}$$D and show that it has an emergent non-invertible higher symmetry. As a result, its disordered phase is described by axion electrodynamics and has two gapless modes corresponding to a photon and a massless axion. Notably, this non-perturbative result is different from the results obtained using the $S^N$ and $$\mathbb{C}P^{N-1}$$ nonlinear $$\si$$-models in the large-$$N$$ limit. 
    more » « less
  5. To address a long‐existing debate on what copper species are responsible for efficient CC coupling, especially ethanol formation, in electrochemical CO2reduction reaction, herein, a comprehensive study using Cu3N nanocubes with a uniform size and shape, alongside a single crystalline phase is reported. The Cu3N nanoensemble electrode has a remarkable Faradaic efficiency (FE) of 64% for ethanol production at a relatively low potential of −0.6 V versus reversible hydrogen electrode. Throughin‐operandoX‐ray absorption spectroscopy study, a dynamic phase evolution that directly correlates with changes in FE across varying applied potentials is observed. Notably, the nanoensemble with a composition of ≈71% Cu+and 29% Cu0is identified as being selective for ethanol formation at the low overpotential. Conversely, a predominantly metallic Cu phase formed at potentials more negative than −0.6 V favors the hydrogen evolution reaction. Density functional theory calculations at the Cu3N–Cu interface substantiate that the coexistence of Cu0–Cu+not only energetically favors the ethanol reaction pathway but also destabilizes the intermediates for ethylene pathway. 
    more » « less