Deep Learning (DL) is a class of machine learning algorithms that are used in a wide variety of applications. Like any software system, DL programs can have bugs. To support bug localization in DL programs, several tools have been proposed in the past. As most of the bugs that occur due to improper model structure known as structural bugs lead to inadequate performance during training, it is challenging for developers to identify the root cause and address these bugs. To support bug detection and localization in DL programs, in this article, we propose Theia, which detects and localizes structural bugs in DL programs. Unlike the previous works, Theia considers the training dataset characteristics to automatically detect bugs in DL programs developed using two DL libraries,KerasandPyTorch. Since training the DL models is a time-consuming process, Theia detects these bugs at the beginning of the training process and alerts the developer with informative messages containing the bug’s location and actionable fixes which will help them to improve the structure of the model. We evaluated Theia on a benchmark of 40 real-world buggy DL programs obtained fromStack Overflow. Our results show that Theia successfully localizes 57/75 structural bugs in 40 buggy programs, whereas NeuraLint, a state-of-the-art approach capable of localizing structural bugs before training localizes 17/75 bugs.
more »
« less
Learning to Detect and Localize Multilingual Bugs
Increasing studies have shown bugs in multi-language software as a critical loophole in modern software quality assurance, especially those induced by language interactions (i.e., multilingual bugs). Yet existing tool support for bug detection/localization remains largely limited to single-language software, despite the long-standing prevalence of multi-language systems in various real-world software domains. Extant static/dynamic analysis and deep learning (DL) based approaches all face major challenges in addressing multilingual bugs. In this paper, we present xLoc, a DL-based technique/tool for detecting and localizing multilingual bugs. Motivated by results of our bug-characteristics study on top locations of multilingual bugs, xLoc first learns the general knowledge relevant to differentiating various multilingual control-flow structures. This is achieved by pre-training a Transformer model with customized position encoding against novel objectives. Then, xLoc learns task-specific knowledge for the task of multilingual bug detection/localization, through another new position encoding scheme (based on cross-language API vicinity) that allows for the model to attend particularly to control-flow constructs that bear most multilingual bugs during fine-tuning. We have implemented xLoc for Python-C software and curated a dataset of 3,770 buggy and 15,884 non-buggy Python-C samples, which enabled our extensive evaluation of xLoc against two state-of-the-art baselines: fine-tuned CodeT5 and zero-shot ChatGPT. Our results show that xLoc achieved 94.98% F1 and 87.24%@Top-1 accuracy, which are significantly (up to 162.88% and 511.75%) higher than the baselines. Ablation studies further confirmed significant contributions of each of the novel design elements in xLoc. With respective bug-location characteristics and labeled bug datasets for fine-tuning, our design may be applied to other language combinations beyond Python-C.
more »
« less
- Award ID(s):
- 2505223
- PAR ID:
- 10595441
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Software Engineering
- Volume:
- 1
- Issue:
- FSE
- ISSN:
- 2994-970X
- Page Range / eLocation ID:
- 2190 to 2213
- Subject(s) / Keyword(s):
- Multi-language software, multilingual bugs, bug detection, fault localization
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep Learning (DL) techniques are increasingly being incorporated in critical software systems today. DL software is buggy too. Recent work in SE has characterized these bugs, studied fix patterns, and proposed detection and localization strategies. In this work, we introduce a preventative measure. We propose design by contract for DL libraries, DL Contract for short, to document the properties of DL libraries and provide developers with a mechanism to identify bugs during development. While DL Contract builds on the traditional design by contract techniques, we need to address unique challenges. In particular, we need to document properties of the training process that are not visible at the functional interface of the DL libraries. To solve these problems, we have introduced mechanisms that allow developers to specify properties of the model architecture, data, and training process. We have designed and implemented DL Contract for Python-based DL libraries and used it to document the properties of Keras, a well-known DL library. We evaluate DL Contract in terms of effectiveness, runtime overhead, and usability. To evaluate the utility of DL Contract, we have developed 15 sample contracts specifically for training problems and structural bugs. We have adopted four well-vetted benchmarks from prior works on DL bug detection and repair. For the effectiveness, DL Contract correctly detects 259 bugs in 272 real-world buggy programs, from well-vetted benchmarks provided in prior work on DL bug detection and repair. We found that the DL Contract overhead is fairly minimal for the used benchmarks. Lastly, to evaluate the usability, we conducted a survey of twenty participants who have used DL Contract to find and fix bugs. The results reveal that DL Contract can be very helpful to DL application developers when debugging their code.more » « less
-
Bug report reproduction is a crucial but time-consuming task to be carried out during mobile app maintenance. To accelerate this process, researchers have developed automated techniques for reproducing mobile app bug reports. However, due to the lack of an effective mechanism to recognize different buggy behaviors described in the report, existing work is limited to reproducing crash bug reports, or requires developers to manually analyze execution traces to determine if a bug was successfully reproduced. To address this limitation, we introduce a novel technique to automatically identify and extract the buggy behavior from the bug report and detect it during the automated reproduction process. To accommodate various buggy behaviors of mobile app bugs, we conducted an empirical study and created a standardized representation for expressing the bug behavior identified from our study. Given a report, our approach first transforms the documented buggy behavior into this standardized representation, then matches it against real-time device and UI information during the reproduction to recognize the bug. Our empirical evaluation demonstrated that our approach achieved over 90% precision and recall in generating the standardized representation of buggy behaviors. It correctly identified bugs in 83% of the bug reports and enhanced existing reproduction techniques, allowing them to reproduce four times more bug reports.more » « less
-
One of the most important tasks related to managing bug reports is localizing the fault so that a fix can be applied. As such, prior work has aimed to automate this task of bug localization by formulating it as an information retrieval problem, where potentially buggy files are retrieved and ranked according to their textual similarity with a given bug report. However, there is often a notable semantic gap between the information contained in bug reports and identifiers or natural language contained within source code files. For user-facing software, there is currently a key source of information that could aid in bug localization, but has not been thoroughly investigated - information from the GUI. We investigate the hypothesis that, for end user-facing applications, connecting information in a bug report with information from the GUI, and using this to aid in retrieving potentially buggy files, can improve upon existing techniques for bug localization. To examine this phenomenon, we conduct a comprehensive empirical study that augments four baseline techniques for bug localization with GUI interaction information from a reproduction scenario to (i) filter out potentially irrelevant files, (ii) boost potentially relevant files, and (iii) reformulate text-retrieval queries. To carry out our study, we source the current largest dataset of fully-localized and reproducible real bugs for Android apps, with corresponding bug reports, consisting of 80 bug reports from 39 popular open-source apps. Our results illustrate that augmenting traditional techniques with GUI information leads to a marked increase in effectiveness across multiple metrics, including a relative increase in Hits@10 of 13-18%. Additionally, through further analysis, we find that our studied augmentations largely complement existing techniques.more » « less
-
null (Ed.)Compiler bugs can be disastrous since they could affect all the software systems built on the buggy compilers. Meanwhile, diagnosing compiler bugs is extremely challenging since usually limited debugging information is available and a large number of compiler files can be suspicious. More specifically, when compiling a given bug-triggering test program, hundreds of compiler files are usually involved, and can all be treated as suspicious buggy files. To facilitate compiler debugging, in this paper we propose the first reinforcement compiler bug isolation approach via structural mutation, called RecBi. For a given bug-triggering test program, RecBi first augments traditional local mutation operators with structural ones to transform it into a set of passing test programs. Since not all the passing test programs can help isolate compiler bugs effectively, RecBi further leverages reinforcement learning to intelligently guide the process of passing test program generation. Then, RecBi ranks all the suspicious files by analyzing the compiler execution traces of the generated passing test programs and the given failing test program following the practice of compiler bug isolation. The experimental results on 120 real bugs from two most popular C open-source compilers, i.e., GCC and LLVM, show that RecBi is able to isolate about 23%/58%/78% bugs within Top-1/Top-5/Top-10 compiler files, and significantly outperforms the state-of-the-art compiler bug isolation approach by improving 92.86%/55.56%/25.68% isolation effectiveness in terms of Top-1/Top-5/Top-10 results.more » « less
An official website of the United States government

