skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elucidating the Impact of Cis – Trans Organic Structure Directing Agent Isomer Ratios on the Aluminum Distribution Within SSZ-39
Despite their widespread use, the mechanisms governing the synthesis of zeolite catalysts are still poorly understood. A notable example of this problem is the uncertainty surrounding the influence of synthesis conditions on the placement of Al atoms in the zeolite framework, which determines the active sites available for catalytic species. In this work, the role of the cis to trans isomer ratio of the OSDA N,N-dimethyl-3-5-dimethylpiperidinium on the energetics of 26 distinct Al pair distributions in SSZ-39 is examined both in the presence and absence of Na using density functional theory calculations. The initial orientation of the OSDA was found to have a significant impact on the final energies present, necessitating the screening of a large number of initial orientations with force field calculations and single point DFT calculations. Ground state energies were found to vary significantly with the ratio of cis to trans OSDAs with a Boltzmann distribution revealing the most likely Al pair distributions shift from sharing the same 8 membered rings to sharing the same double 6-membered rings to having no shared subunits as one increases the amount of cis OSDA present within the framework. The presence of Na was found to favor Al pair distributions where both Als occupied the same 6-membered ring. When an implicit solvent model was used to evaluate ground state energies the ideal Na sites shifted from 6-membered rings to empty SSZ-39 cages while OSDA positions and orientations remained largely the same. To provide insight on how kinetic factors may influence Al distributions, formation energies we calculated for connected double 6-membered rings. These formation energies revealed a preference for Al pairs to occupy the same 4-membered ring, which indicates kinetic and thermodynamic control may lead to different Al distributions in SSZ-39.  more » « less
Award ID(s):
2035280
PAR ID:
10595446
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Chemistry Society
Date Published:
Journal Name:
Chemistry of Materials
Volume:
36
Issue:
24
ISSN:
0897-4756
Page Range / eLocation ID:
11852 to 11862
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work integrates experiments and computational methods to quantify how the cis/trans ratio of the OSDA used in SSZ-39 synthesis impacts the crystallization kinetics, material properties, and final product composition. The crystallization kinetics increase by 30% when increasing the trans isomer content from 14% to 80%. Per prior work, in all cases based on the synthesis gel composition and product yield aluminum is the limiting reagent, and the absence of any amorphous material detected in the time resolved PXRD studies leads us to conclude that FAU dissolution is the rate limiting step in the formation of SSZ-39 in this synthesis protocol. The TGA and NMR results suggest that the trans isomer of OSDA is selectively incorporated into the product. The NMR binding studies, and corresponding DFT-based results show that the trans isomer binds to FAU more strongly than the cis isomer, providing one possible explanation for this enhancement in kinetics and preferential uptake of the trans isomer. The EDS analysis indicates that the Si/Al ratios are between 7.7 and 8.6 at low and high trans OSDA content, indicating zeolite composition is mildly sensitive to the trans isomer content. EDS results show this decrease in aluminum content leads to a corresponding decrease in sodium uptake. DFT-based calculations confirm OSDA–sodium interactions cannot explain any decrease in sodium uptake, reinforcing lower aluminum content as the cause of lower sodium uptake. Preliminary cobalt titration experiments show a surprisingly low cobalt uptake but also show a clear dependence of the cobalt uptake on the solution pH. 
    more » « less
  2. Abstract Zeolite reactivity depends on the solvating environments of their micropores and the proximity of their Brønsted acid sites. Turnover rates (per H+) for methanol and ethanol dehydration increase with the fraction of H+sites sharing six‐membered rings of chabazite (CHA) zeolites. Density functional theory (DFT) shows that activation barriers vary widely with the number and arrangement of Al (1–5 per 36 T‐site unit cell), but cannot be described solely by Al–Al distance or density. Certain Al distributions yield rigid arrangements of anionic charge that stabilize cationic intermediates and transition states via H‐bonding to decrease barriers. This is a key feature of acid catalysis in zeolite solvents, which lack the isotropy of liquid solvents. The sensitivity of polar transition states to specific arrangements of charge in their solvating environments and the ability to position such charges in zeolite lattices with increasing precision herald rich catalytic diversity among zeolites of varying Al arrangement. 
    more » « less
  3. Abstract The influence of the copper ion exchange protocol on SCR activity of SSZ‐13 is quantified. Using the same parent SSZ‐13 zeolite, four exchange protocols are used to assess how exchange protocol impacts metal uptake and SCR activity. Large differences in the SCR activity, nearly 30 percentage points at 160 °C at constant copper content, are observed for different exchange protocols implying that different exchange protocols lead to different copper species. Hydrogen temperature programmed reduction on selected samples and infrared spectroscopy of CO binding corroborates this conclusion as the reactivity at 160 °C correlates with the intensity of the IR band at 2162 cm−1. DFT‐based calculations show that such an IR assignment is consistent with CO adsorbed on a Cu(I) cation within an eight‐membered ring. This work shows that SCR activity can be influenced by the ion exchange process even when different protocols lead to the same metal loading. Perhaps most interesting, a protocol used to generate Cu‐MOR for methane to methanol studies led to the most active catalyst both on a unit mass or unit mole copper basis. This points to a yet not recognized means to tailor catalyst activity as the open literature is silent on this issue. 
    more » « less
  4. The speciation and structure of Cu ions and complexes in chabazite (SSZ-13) zeolites, which are relevant catalysts for nitrogen oxide reduction and partial methane oxidation, depend on material composition and reaction environment. Ultraviolet-visible (UV-Vis) spectra of Cu-SSZ-13 zeolites synthesized to contain specific Cu site motifs, together with ab initio molecular dynamics and time-dependent density functional theory calculations, were used to test the ability to relate specific spectroscopic signatures to specific site motifs. Geometrically distinct arrangements of two framework Al atoms in six-membered rings are found to exchange Cu 2+ ions that become spectroscopically indistinguishable after accounting for the finite-temperature fluctuations of the Cu coordination environment. Nominally homogeneous single Al exchange sites are found to exchange a heterogeneous mixture of [CuOH] + monomers, O- and OH-bridged Cu dimers, and larger polynuclear complexes. The UV-Vis spectra of the latter are sensitive to framework Al proximity, to precise ligand environment, and to finite-temperature structural fluctuations, precluding the precise assignment of spectroscopic features to specific Cu structures. In all Cu-SSZ-13 samples, these dimers and larger complexes are reduced by CO to Cu + sites at 523 K, leaving behind isolated [CuOH] + sites with a characteristic spectroscopic identity. The various mononuclear and polynuclear Cu 2+ species are distinguishable by their different responses to reducing environments, with implications for their relevance to catalytic redox reactions. 
    more » « less
  5. The structures of three racemic (tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)methanol derivatives are reported, namely, 4-[(methylsulfonyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C8H14O7S,1, 4-[(benzyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H18O5,2, and 4-[(anilinocarbonyl)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H17NO6,3. Mesylate ester1at 173 K has triclinicP\overline{1} symmetry and both benzyl ether2at 173 K and phenyl urethane3have monoclinicP21/csymmetry. These structures are of interest because of the conformation of thecis-fused tetraoxadecalin ring system. Thiscis-bicyclo[4.4.0]decane ring system,i.e. cis-decalin, can undergo conformational equilibration. In the two most stable conformers, both six-membered rings adopt a chair conformation. However, there are significant consequences in these two stable conformers, with heteroatom substitution at the 1,3,5,7-ring positions as described. Only one conformation, denoted as `concave' or `inside', is found in these crystal structures. This is consistent with previously reported structures of the 1,1-geminal dihydroxy aldehyde and tosylate analogs. 
    more » « less