skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bumblebees prefer sulfoxaflor-contaminated food and show caste-specific differences in sulfoxaflor sensitivity
Abstract More than 30% of human food crop yield requires animal pollination. In addition, successful crop production depends on agrochemicals to control pests. However, agrochemicals can have negative consequences on beneficial insect pollinators, such as bees. We investigated the effects of an emerging class of pesticides, sulfoximines, on the common eastern bumblebee, Bombus impatiens. We performed a series of 96-hour toxicity tests on microcolonies of laboratory-reared B. impatiens. Our data showed that sulfoxaflor (SFX) is significantly less toxic to B. impatiens than historically used neonicotinoid pesticides, such as thiamethoxam. Further, for the first time, we found significant differences among castes in sensitivity to SFX; workers and drones were more sensitive than queens. These findings are notable because they reveal both caste and sex-specific differences in bumblebee sensitivity to pesticides. Interestingly, we found no evidence that bumblebees avoid SFX-contaminated sugar syrup. To the contrary, B. impatiens workers had an apparent preference for SFX-contaminated sugar syrup over sugar syrup alone. Overall, our investigation provides novel information on an important pesticide and may help inform regulatory decisions regarding pesticide use.  more » « less
Award ID(s):
2019799
PAR ID:
10595589
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Environmental Toxicology and Chemistry
Volume:
44
Issue:
1
ISSN:
0730-7268
Page Range / eLocation ID:
232 to 239
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most pesticide research has focussed on risk to managed honeybees, but other managed and wild bees are also exposed to pesticides. Critically, we know little about the magnitude and sources of risk to honeybees compared with other bees during crop pollination.To compare pesticide exposure and risk across wild and managed bees, we sampled the main bee groups present during bloom in 20 apple orchards, including managed honeybees (Apis mellifera), managed bumblebee workers (Bombus impatiens), wild mining bees (Andrenaspp. andAndrena [Melandrena]spp.), bumblebee foundress queens (Bombus impatiens) and eastern carpenter bees (Xylocopa virginica). We screened all bees for 92 pesticides and computed a Risk Quotient using available toxicity data (honeybee LD50s), adjusting for differences in toxicity known to scale with body mass. To gain insight into exposure origin, we compared residues in bees to those in focal orchard apple and dandelion flowers.Nearly all bee samples contained pesticides (95%), with the average contamination level ranging from 7.1 ± 2.8 parts per billion (ppb) inB. impatiensworkers to 388.4 ± 146.2 ppb inAndrena. Exposure profiles were similar for all bees exceptA. mellifera, whose unique exposure profile included high levels of the neonicotinoid insecticide thiamethoxam.All bee groups except wildB. impatiensqueens had at least one sample exceeding a US Environmental Protection Agency or European Food Safety Authority exposure level of concern.Apis melliferaexperienced significantly greater risk than other bee groups, with 63% and 81% of samples exceeding an acute or chronic exposure level of concern, respectively. Risk to honeybees was driven primarily by high thiamethoxam levels not found in focal orchard flowers and likely originating outside the orchard.Synthesis and applications: We find that pesticide exposure and risk differ between honeybees and other managed and wild bees during apple pollination. Furthermore, pesticide exposure is a landscape‐scale phenomenon and therefore measures to reduce exposure must consider the surroundings beyond focal farms. Limiting orchard sprays, while reducing on‐farm exposures, will not protect far‐foraging bees from off‐farm exposures such as thiamethoxam, which we hypothesize is coming from nearby seed‐treated corn fields planted during apple bloom. 
    more » « less
  2. null (Ed.)
    Numerous threats are putting pollinator health and essential ecosystem pollination services in jeopardy. Although individual threats are widely studied, their co-occurrence may exacerbate negative effects, as posited by the multiple stressor hypothesis. A prominent branch of this hypothesis concerns pesticide–pathogen co-exposure. A landscape analysis demonstrated a positive association between local chlorothalonil fungicide use and microsporidian pathogen ( Nosema bombi ) prevalence in declining bumblebee species ( Bombus spp.), suggesting an interaction deserving further investigation. We tested the multiple stressor hypothesis with field-realistic chlorothalonil and N. bombi exposures in worker-produced B. impatiens microcolonies. Chlorothalonil was not avoided in preference assays, setting the stage for pesticide–pathogen co-exposure. However, contrary to the multiple stressor hypothesis, co-exposure did not affect survival. Bees showed surprising tolerance to Nosema infection, which was also unaffected by chlorothalonil exposure. However, previously fungicide-exposed infected bees carried more transmission-ready spores. Our use of a non-declining bumblebee and potential higher chlorothalonil exposures under some scenarios could mean stronger individual or interactive effects in certain field settings. Yet, our results alone suggest consequences of pesticide co-exposure for pathogen dynamics in host communities. This underlies the importance of considering both within- and between-host processes when addressing the multiple stressor hypothesis in relation to pathogens. 
    more » « less
  3. Abstract Notwithstanding popular perception, the environmental impacts of organic agriculture, particularly with respect to pesticide use, are not well established. Fueling the impasse is the general lack of data on comparable organic and conventional agricultural fields. We identify the location of ~9,000 organic fields from 2013 to 2019 using field-level crop and pesticide use data, along with state certification data, for Kern County, CA, one of the US’ most valuable crop producing counties. We parse apart how being organic relative to conventional affects decisions to spray pesticides and, if spraying, how much to spray using both raw and yield gap-adjusted pesticide application rates, based on a global meta-analysis. We show the expected probability of spraying any pesticides is reduced by about 30 percentage points for organic relative to conventional fields, across different metrics of pesticide use including overall weight applied and coarse ecotoxicity metrics. We report little difference, on average, in pesticide use for organic and conventional fields that do spray, though observe substantial crop-specific heterogeneity. 
    more » « less
  4. The environmental impacts of organic agriculture are only partially understood and whether such practices have spillover effects on pests or pest control activity on nearby fields remains unknown. Using roughly 13,000 field observations per year from 2013-2019 in Kern County, CA , we estimate that organic crop producers benefit from surrounding organic fields, decreasing overall pesticide use and pesticides targeting insect pests. Conventional fields, in contrast, tend to increase pesticide use as the area of surrounding organic production increases. 
    more » « less
  5. The environmental impacts of organic agriculture are only partially understood and whether such practices have spillover effects on pests or pest control activity in nearby fields remains unknown. Using about 14,000 field observations per year from 2013 to 2019 in Kern County, California, we postulate that organic crop producers benefit from surrounding organic fields decreasing overall pesticide use and, specifically, pesticides targeting insect pests. Conventional fields, by contrast, tend to increase pesticide use as the area of surrounding organic production increases. Our simulation suggests that spatially clustering organic cropland can entirely mitigate spillover effects that lead to an increase in net pesticide use. 
    more » « less