skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pesticide risk during commercial apple pollination is greater for honeybees than other managed and wild bees
Abstract Most pesticide research has focussed on risk to managed honeybees, but other managed and wild bees are also exposed to pesticides. Critically, we know little about the magnitude and sources of risk to honeybees compared with other bees during crop pollination.To compare pesticide exposure and risk across wild and managed bees, we sampled the main bee groups present during bloom in 20 apple orchards, including managed honeybees (Apis mellifera), managed bumblebee workers (Bombus impatiens), wild mining bees (Andrenaspp. andAndrena [Melandrena]spp.), bumblebee foundress queens (Bombus impatiens) and eastern carpenter bees (Xylocopa virginica). We screened all bees for 92 pesticides and computed a Risk Quotient using available toxicity data (honeybee LD50s), adjusting for differences in toxicity known to scale with body mass. To gain insight into exposure origin, we compared residues in bees to those in focal orchard apple and dandelion flowers.Nearly all bee samples contained pesticides (95%), with the average contamination level ranging from 7.1 ± 2.8 parts per billion (ppb) inB. impatiensworkers to 388.4 ± 146.2 ppb inAndrena. Exposure profiles were similar for all bees exceptA. mellifera, whose unique exposure profile included high levels of the neonicotinoid insecticide thiamethoxam.All bee groups except wildB. impatiensqueens had at least one sample exceeding a US Environmental Protection Agency or European Food Safety Authority exposure level of concern.Apis melliferaexperienced significantly greater risk than other bee groups, with 63% and 81% of samples exceeding an acute or chronic exposure level of concern, respectively. Risk to honeybees was driven primarily by high thiamethoxam levels not found in focal orchard flowers and likely originating outside the orchard.Synthesis and applications: We find that pesticide exposure and risk differ between honeybees and other managed and wild bees during apple pollination. Furthermore, pesticide exposure is a landscape‐scale phenomenon and therefore measures to reduce exposure must consider the surroundings beyond focal farms. Limiting orchard sprays, while reducing on‐farm exposures, will not protect far‐foraging bees from off‐farm exposures such as thiamethoxam, which we hypothesize is coming from nearby seed‐treated corn fields planted during apple bloom.  more » « less
Award ID(s):
1929499
PAR ID:
10525984
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
61
Issue:
6
ISSN:
0021-8901
Format(s):
Medium: X Size: p. 1289-1300
Size(s):
p. 1289-1300
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract More than 30% of human food crop yield requires animal pollination. In addition, successful crop production depends on agrochemicals to control pests. However, agrochemicals can have negative consequences on beneficial insect pollinators, such as bees. We investigated the effects of an emerging class of pesticides, sulfoximines, on the common eastern bumblebee, Bombus impatiens. We performed a series of 96-hour toxicity tests on microcolonies of laboratory-reared B. impatiens. Our data showed that sulfoxaflor (SFX) is significantly less toxic to B. impatiens than historically used neonicotinoid pesticides, such as thiamethoxam. Further, for the first time, we found significant differences among castes in sensitivity to SFX; workers and drones were more sensitive than queens. These findings are notable because they reveal both caste and sex-specific differences in bumblebee sensitivity to pesticides. Interestingly, we found no evidence that bumblebees avoid SFX-contaminated sugar syrup. To the contrary, B. impatiens workers had an apparent preference for SFX-contaminated sugar syrup over sugar syrup alone. Overall, our investigation provides novel information on an important pesticide and may help inform regulatory decisions regarding pesticide use. 
    more » « less
  2. Abstract Pesticides and parasites have each been linked to increased mortality in western honey bees (Apis mellifera). Currently, it is uncertain if one makes the other worse; several studies have tested for potential synergistic stressor effects, but results have been mixed.Here, we use a hierarchical meta‐analysis of 63 experiments from 26 studies to gain a clearer view of the combined effects of parasites and pesticides on honey bee health.We found that combined pesticide–parasite treatments do tend to be deadlier than uncombined treatments but are significantly less deadly than predicted additive or multiplicative effects. In other words, combined treatment effects are not synergistic, but antagonistic.Much of the previous uncertainty about the combined effects of pesticides and parasites on honey bee health can be attributed to a bias in the previous research against stressor antagonism; many researchers have excluded the possibility of antagonism a priori.Synthesis and applications. Meta‐analysis shows that when honey bees are stressed by a combination of pesticides and parasites, the combined stress effect is antagonistic, that is, less than the sum of its parts. A better understanding of the mechanisms underlying this antagonism could prove critical for effective management of honey bee health. 
    more » « less
  3. Wild pollinator declines are increasingly linked to pesticide exposure, yet it is unclear how intraspecific differences contribute to observed variation in sensitivity, and the role gut microbes play in the sensitivity of wild bees is largely unexplored. Here, we investigate site-level differences in survival and microbiome structure of a wild bumble bee exposed to multiple pesticides, both individually and in combination. We collected wildBombus vosnesenskiiforagers (N= 175) from an alpine meadow, a valley lake shoreline and a suburban park and maintained them on a diet containing a herbicide (glyphosate), a fungicide (tebuconazole), an insecticide (imidacloprid) or a combination of these chemicals. Alpine bees had the highest overall survival, followed by shoreline bees then suburban bees. This was in part explained by body size differences across sites and the presence of conopid parasitoids at two of the sites. Notably, site of origin impacted bee survival on the herbicide, fungicide and combination treatment. We did not find evidence of gut microbiome differences across pesticide treatment, nor a site-by-treatment interaction. Regardless, the survival differences we observed emphasize the importance of considering population of origin when studying pesticide toxicity of wild bees. 
    more » « less
  4. null (Ed.)
    Numerous threats are putting pollinator health and essential ecosystem pollination services in jeopardy. Although individual threats are widely studied, their co-occurrence may exacerbate negative effects, as posited by the multiple stressor hypothesis. A prominent branch of this hypothesis concerns pesticide–pathogen co-exposure. A landscape analysis demonstrated a positive association between local chlorothalonil fungicide use and microsporidian pathogen ( Nosema bombi ) prevalence in declining bumblebee species ( Bombus spp.), suggesting an interaction deserving further investigation. We tested the multiple stressor hypothesis with field-realistic chlorothalonil and N. bombi exposures in worker-produced B. impatiens microcolonies. Chlorothalonil was not avoided in preference assays, setting the stage for pesticide–pathogen co-exposure. However, contrary to the multiple stressor hypothesis, co-exposure did not affect survival. Bees showed surprising tolerance to Nosema infection, which was also unaffected by chlorothalonil exposure. However, previously fungicide-exposed infected bees carried more transmission-ready spores. Our use of a non-declining bumblebee and potential higher chlorothalonil exposures under some scenarios could mean stronger individual or interactive effects in certain field settings. Yet, our results alone suggest consequences of pesticide co-exposure for pathogen dynamics in host communities. This underlies the importance of considering both within- and between-host processes when addressing the multiple stressor hypothesis in relation to pathogens. 
    more » « less
  5. Abstract Plants have unique chemical and physical traits that can reduce infections in animals ranging from primates to caterpillars. Sunflowers (Helianthus annuus; Asteraceae) are one striking example, with pollen that suppresses infections by the trypanosomatid gut pathogenCrithidia bombiin the common eastern bumble bee (Bombus impatiens). However, the mechanism underlying this effect has remained elusive, and we do not know whether pollens from other Asteraceae species have similar effects.We evaluated whether mechanisms mediating sunflower pollen's antipathogenic effects are physical (due to its spiny exine), chemical (due to metabolites) or both. We also evaluated the degree to which pollen from seven other Asteraceae species reducedC. bombiinfection relative to pollen from sunflower and two non‐Asteraceae species, and whether pollen spine length predicted pathogen suppression.We found that sunflower exines alone reduced infection as effectively as whole sunflower pollen, while sunflower pollen metabolites did not. Furthermore, bees fed pollen from four of seven other Asteraceae had 62%–92% lowerC. bombiinfections than those fed non‐Asteraceae pollen. Spine length, however, did not explain variation in bumble bee infection.Our study indicates that sunflower pollen's capacity to suppressC. bombiis driven by its spiny exine, and that this phenomenon extends to several other Asteraceae species. Our results indicate that sunflower pollen exines are as effective as whole pollen in reducing infection, suggesting that future studies should expand to assess the effects of other species with spiny pollen on pollinator–pathogen dynamics. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less