skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Fine structure transitions with spectral features in Fe V and Fe VI
This work is part of the groundwork for iron opacity calculations for solar modeling. A B S T R A C T An extensive set of E1 transitions with spectral features for Fe V obtained using relativistic Breit–Pauli R-matrix (BPRM) method is presented. The results correspond to a larger amount of atomic data and of higher accuracy in comparison to the earlier R-matrix results. We report 1,712,655 transitions among 4300 fine structure levels with 𝑗 ≤ 10, 2𝑆 + 1 = 5, 3, 1, 𝐿 ≤ 10, of even and odd parities of n ≤ 10 and 𝑙 ≤ 9. The close coupling wavefunction expansion of Fe V includes ground and 18 excited levels of the core ion Fe VI. The theoretical spectroscopy of the fine structure levels for unique identifications was carried out using an algorithm based on quantum defect theory and angular algebra. The completeness of the calculated data sets is verified for all possible bound levels belonging to the relevant 𝐿𝑆 terms. The energies are in very good agreement with measured values within a few percent for most levels. Comparison of transition parameters and lifetimes also indicate general agreement with others. The present data processed for spectral features that show the detectability of Fe V is well within range of James Webb Space Telescope and other observatories. The present results for Fe VI, obtained from relativistic atomic structure calculations in Breit–Pauli approximation using code SUPERSTRUCTURE, include allowed E1 and forbidden E2, M1, E3, M2 transitions, 506,512 in total among 1021 energy levels, bound and continuum. Calculations show much larger number of bound levels of configurations of 3𝑠23𝑝53𝑑4 than those listed at NIST compilation table. The calculations included an optimized set of 9 configurations with orbitals going up to 4f. Comparison of energies, oscillator strengths, lifetimes with available values show good agreement although some large differences are also noted. In contrast to Fe V, the spectral features of Fe VI show three regions of strong lines in the soft-xray to ultraviolet wavelengths.  more » « less
Award ID(s):
2407470
PAR ID:
10595620
Author(s) / Creator(s):
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Atomic Data and Nuclear Data Tables
Volume:
162
Issue:
C
ISSN:
0092-640X
Page Range / eLocation ID:
101700
Subject(s) / Keyword(s):
Atomic data from R-matrix method Fine structure levels and radiative transition probabilities Lifetimes Spectral features
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We have applied the full-relativistic Dirac B-Spline R-matrix method to obtain cross sections for electron scattering from ytterbium atoms. The results are compared with those obtained from a semi-relativistic (Breit-Pauli) model-potential approach and the few available experimental data. 
    more » « less
  2. The f-block ab initio correlation consistent composite approach was used to predict the dissociation energies of lanthanide sulfides and selenides. Geometry optimizations were carried out using density functional theory and coupled cluster singles, doubles, and perturbative triples with one- and two-component Hamiltonians. For the two-component calculations, relativistic effects were accounted for by utilizing a third-order Douglas–Kroll–Hess Hamiltonian. Spin–orbit coupling was addressed with the Breit–Pauli Hamiltonian within a multireference configuration interaction approach. The state averaged complete active space self-consistent field wavefunctions obtained for the spin–orbit coupling energies were used to assign the ground states of diatomics, and several diagnostics were used to ascertain the multireference character of the molecules. 
    more » « less
  3. Abstract We improve by a factor of 4–20 the energy accuracy of the strongest soft X-ray transitions of Fexviiions by resonantly exciting them in an electron beam ion trap with a monochromatic beam at the P04 beamline of the PETRA III synchrotron facility. By simultaneously tracking instantaneous photon-energy fluctuations with a high-resolution photoelectron spectrometer, we minimize systematic uncertainties down to 10–15 meV, or velocity equivalent ±∼5 km s−1in their rest energies, substantially improving our knowledge of this key astrophysical ion. Our large-scale configuration-interaction computations include more than 4 million relativistic configurations and agree with the experiment at a level without precedent for a 10-electron system. Thereby, theoretical uncertainties for interelectronic correlations become far smaller than those of quantum electrodynamics (QED) corrections. The present QED benchmark strengthens our trust in future calculations of many other complex atomic ions of interest to astrophysics, plasma physics, and the development of optical clocks with highly charged ions. 
    more » « less
  4. Abstract This work reports large-scale calculations of electron excitation effective collision strengths and transition rates for a wide range of Sciispectral lines for astrophysical analysis and modeling. The present results are important for reliable abundance determinations in various astrophysical objects, including metal-poor stars, Hiiregions, and gaseous nebulae. Accurate descriptions of the target wave functions and adequate accounts of the various interactions between the target levels are of primary importance for calculations of collision and radiative parameters. The target wave functions have been determined by a combination of the multiconfiguration Hartree–Fock and B-spline box-based close-coupling methods, together with the nonorthogonal orbitals technique. The calculations of the collision strengths have been performed using the B-spline Breit–Pauli R-matrix method. The close-coupling expansion includes 145 fine-structure levels of Sciibelonging to the terms of the 3p63d2, 3p63d4l(l= 0–3), 3p63d5l(l= 0–3), 3p63d6s, 3p64s2, 3p64s4l(l= 0–3), 3p64s5l(l= 0–1), and 3p64p2configurations. The effective collision strengths are reported as a function of electron temperature in the range from 103to 105K. The collision and radiative rates are reported for all of the possible transitions between the 145 fine-structure levels. Striking discrepancies exist with the previous R-matrix calculations of the effective collision strengths for the majority of the transitions, indicating possible systematic errors in these calculations. Thus, there is a need for accurate calculations to reduce the uncertainties in the atomic data. The likely uncertainties in our effective collision strengths and radiative parameters have been assessed by means of comparisons with other collision calculations and available experimental radiative parameters. 
    more » « less
  5. Analytic fits to the recommended electron-impact excitation and ionization cross sections for Be I are presented. The lowest 19 terms of configurations 2snl (n≤4) and 2p2 terms below the first ionization limit are considered. The fits are based on the accurate calculations with the convergent close coupling (CCC) method as well as the B-spline R-matrix (BSR) approach. The fitted cross sections provide rate coefficients that are believed to approximate the original data within 10% with very few exceptions. The oscillator strengths for the dipole-allowed transitions between all the considered states are calculated with the relativistic multi-configuration Dirac–Hartree–Fock (MCDHF) approach and compared with the CCC and BSR results. This comparison shows a very good agreement except for a handful of cases with likely strong cancellations. 
    more » « less