skip to main content

This content will become publicly available on September 1, 2022

Title: Relativistic B-Spline R-Matrix Calculations for Electron Collisions with Ytterbium
We have applied the full-relativistic Dirac B-Spline R-matrix method to obtain cross sections for electron scattering from ytterbium atoms. The results are compared with those obtained from a semi-relativistic (Breit-Pauli) model-potential approach and the few available experimental data.
Authors:
; ;
Award ID(s):
1803844 1834740 2110023
Publication Date:
NSF-PAR ID:
10282750
Journal Name:
Atoms
Volume:
9
Issue:
3
Page Range or eLocation-ID:
47
ISSN:
2218-2004
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Relativistic jets are highly collimated plasma outflows emerging from accreting black holes. They are launched with a significant amount of magnetic energy, which can be dissipated to accelerate non-thermal particles and give rise to electromagnetic radiation at larger scales. Kink instabilities can be an efficient mechanism to trigger dissipation of jet magnetic energy. While previous works have studied the conditions required for the growth of kink instabilities in relativistic jets, the radiation signatures of these instabilities have not been investigated in detail. In this paper, we aim to self-consistently study radiation and polarization signatures from kink instabilities in relativisticmore »jets. We combine large-scale relativistic magnetohydrodynamic (RMHD) simulations with polarized radiation transfer of a magnetized jet, which emerges from the central engine and propagates through the surrounding medium. We observe that a localized region at the central spine of the jet exhibits the strongest kink instabilities, which we identify as the jet emission region. Very interestingly, we find quasi-periodic oscillation (QPO) signatures in the light curve from the emission region. Additionally, the polarization degree appears to be anticorrelated to flares in the light curves. Our analyses show that these QPO signatures are intrinsically driven by kink instabilities, where the period of the QPOs is associated with the kink growth time-scale. The latter corresponds to weeks to months QPOs in blazars. The polarization signatures offer unique diagnostics for QPOs driven by kink instabilities.« less
  2. Context. Standing and moving shocks in relativistic astrophysical jets are very promising sites for particle acceleration to large Lorentz factors and for the emission from the radio up to the γ -ray band. They are thought to be responsible for at least part of the observed variability in radio-loud active galactic nuclei. Aims. We aim to simulate the interactions of moving shock waves with standing recollimation shocks in structured and magnetized relativistic jets and to characterize the profiles of connected flares in the radio light curve. Methods. Using the relativistic magneto-hydrodynamic code MPI-AMRVAC and a radiative transfer code in post-processing,more »we explore the influence of the magnetic-field configuration and transverse stratification of an over-pressured jet on its morphology, on the moving shock dynamics, and on the emitted radio light curve. First, we investigate different large-scale magnetic fields with their effects on the standing shocks and on the stratified jet morphology. Secondly, we study the interaction of a moving shock wave with the standing shocks. We calculated the synthetic synchrotron maps and radio light curves and analyze the variability at two frequencies 1 and 15.3 GHz and for several observation angles. Finally, we compare the characteristics of our simulated light curves with radio flares observed from the blazar 3C 273 with the Owens Valley Radio Observatory and Very Long Baseline Array in the MOJAVE survey between 2008 and 2019. Results. We find that in a structured over-pressured relativistic jet, the presence of the large-scale magnetic field structure changes the properties of the standing shock waves and leads to an opening in the jet. The interaction between waves from inner and outer jet components can produce strong standing shocks. When crossing such standing shocks, moving shock waves accompanying overdensities injected in the base of the jet cause very luminous radio flares. The observation of the temporal structure of these flares under different viewing angles probes the jet at different optical depths. At 1 GHz and for small angles, the self-absorption caused by the moving shock wave becomes more important and leads to a drop in the observed flux after it interacts with the brightest standing knot. A weak asymmetry is seen in the shape of the simulated flares, resulting from the remnant emission of the shocked standing shocks. The characteristics of the simulated flares and the correlation of peaks in the light curve with the crossing of moving and standing shocks favor this scenario as an explanation of the observed radio flares of 3C 273.« less
  3. Alfvén wave collisions are the primary building blocks of the non-relativistic turbulence that permeates the heliosphere and low- to moderate-energy astrophysical systems. However, many astrophysical systems such as gamma-ray bursts, pulsar and magnetar magnetospheres and active galactic nuclei have relativistic flows or energy densities. To better understand these high-energy systems, we derive reduced relativistic magnetohydrodynamics equations and employ them to examine weak Alfvénic turbulence, dominated by three-wave interactions, in reduced relativistic magnetohydrodynamics, including the force-free, infinitely magnetized limit. We compare both numerical and analytical solutions to demonstrate that many of the findings from non-relativistic weak turbulence are retained in relativisticmore »systems. But, an important distinction in the relativistic limit is the inapplicability of a formally incompressible limit, i.e. there exists finite coupling to the compressible fast mode regardless of the strength of the magnetic field. Since fast modes can propagate across field lines, this mechanism provides a route for energy to escape strongly magnetized systems, e.g. magnetar magnetospheres. However, we find that the fast-Alfvén coupling is diminished in the limit of oblique propagation.« less
  4. ABSTRACT Electromagnetic precursor waves generated by the synchrotron maser instability at relativistic magnetized shocks have been recently invoked to explain the coherent radio emission of fast radio bursts. By means of 2D particle-in-cell simulations, we explore the properties of the precursor waves in relativistic electron–positron perpendicular shocks as a function of the pre-shock magnetization σ ≳ 1 (i.e. the ratio of incoming Poynting flux to particle energy flux) and thermal spread Δγ ≡ kT/mc2 = 10−5−10−1. We measure the fraction fξ of total incoming energy that is converted into precursor waves, as computed in the post-shock frame. At fixed magnetization, we findmore »that fξ is nearly independent of temperature as long as Δγ ≲ 10−1.5 (with only a modest decrease of a factor of 3 from Δγ = 10−5 to Δγ = 10−1.5), but it drops by nearly two orders of magnitude for Δγ ≳ 10−1. At fixed temperature, the scaling with magnetization $f_\xi \sim 10^{-3}\, \sigma ^{-1}$ is consistent with our earlier 1D results. For our reference σ = 1, the power spectrum of precursor waves is relatively broad (fractional width ∼1 − 3) for cold temperatures, whereas it shows pronounced line-like features with fractional width ∼0.2 for 10−3 ≲ Δγ ≲ 10−1.5. For σ ≳ 1, the precursor waves are beamed within an angle ≃σ−1/2 from the shock normal (as measured in the post-shock frame), as required so they can outrun the shock. Our results can provide physically grounded inputs for FRB emission models based on maser emission from relativistic shocks.« less
  5. ABSTRACT Accreting black holes (BHs) launch relativistic collimated jets, across many decades in luminosity and mass, suggesting the jet launching mechanism is universal, robust, and scale-free. Theoretical models and general relativistic magnetohydrodynamic (GRMHD) simulations indicate that the key jet-making ingredient is large-scale poloidal magnetic flux. However, its origin is uncertain, and it is unknown if it can be generated in situ or dragged inward from the ambient medium. Here, we use the GPU-accelerated GRMHD code h-amr to study global 3D BH accretion at unusually high resolutions more typical of local shearing box simulations. We demonstrate that turbulence in a radially extendedmore »accretion disc can generate large-scale poloidal magnetic flux in situ, even when starting from a purely toroidal magnetic field. The flux accumulates around the BH till it becomes dynamically important, leads to a magnetically arrested disc (MAD), and launches relativistic jets that are more powerful than the accretion flow. The jet power exceeds that of previous GRMHD toroidal field simulations by a factor of 10 000. The jets do not show significant kink or pinch instabilities, accelerate to γ ∼ 10 over three decades in distance, and follow a collimation profile similar to the observed M87 jet.« less