Abstract Neisseria gonorrhea (Ngo) is a major concern for global public health due to its severe implications for reproductive health. Understanding its metabolic phenotype is crucial for comprehending its pathogenicity. Despite Ngo’s ability to encode tricarboxylic acid (TCA) cycle proteins, GltA and AcnB, their activities are notably restricted. To investigate this phenomenon, we used the iNgo_557 metabolic model and incorporated a constraint on total cellular protein content. Our results indicate that low cellular protein content severely limits GltA and AcnB activity, leading to a shift toward acetate overflow for Adenosine triphosphate (ATP) production, which is more efficient in terms of protein usage. Surprisingly, increasing cellular protein content alleviates this restriction on GltA and AcnB and delays the onset of acetate overflow, highlighting protein allocation as a critical determinant in understanding Ngo’s metabolic phenotype. These findings underscore the significance of Ngo’s metabolic adaptation in light of optimal protein allocation, providing a blueprint to understand Ngo’s metabolic landscape.
more »
« less
This content will become publicly available on January 28, 2026
A thermodynamic bottleneck in the TCA cycle contributes to acetate overflow in Staphylococcus aureus
ABSTRACT During aerobic growth,S. aureusrelies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow inS. aureushave not been identified. Here, we show that acetate overflow is favored due to a thermodynamic bottleneck in the TCA cycle specifically involving the oxidation of succinate to fumarate by succinate dehydrogenase. This bottleneck reduces flux through the TCA cycle, making it more efficient forS. aureusto generate ATP via acetate overflow metabolism. Additionally, the protein allocation cost of maintaining ATP flux through the restricted TCA cycle is greater than that of acetate overflow metabolism. Finally, we show that the TCA cycle bottleneck providesS. aureusthe flexibility to redirect carbon toward maintaining redox balance through lactate overflow when oxygen becomes limiting, albeit at the expense of ATP production through acetate overflow. Overall, our findings suggest that overflow metabolism offersS. aureusdistinct bioenergetic advantages over a thermodynamically constrained TCA cycle, potentially supporting its commensal–pathogenic lifestyle.
more »
« less
- Award ID(s):
- 1943310
- PAR ID:
- 10595640
- Editor(s):
- Ellermeier, Craig D
- Publisher / Repository:
- American Society for Microbiology
- Date Published:
- Journal Name:
- mSphere
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2379-5042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)High-affinity iron (Fe) scavenging compounds, or siderophores, are widely employed by soil bacteria to survive scarcity in bioavailable Fe. Siderophore biosynthesis relies on cellular carbon metabolism, despite reported decrease in both carbon uptake and Fe-containing metabolic proteins in Fe-deficient cells. Given this paradox, the metabolic network required to sustain the Fe-scavenging strategy is poorly understood. Here, through multiple 13 C-metabolomics experiments with Fe-replete and Fe-limited cells, we uncover how soil Pseudomonas species reprogram their metabolic pathways to prioritize siderophore biosynthesis. Across the three species investigated ( Pseudomonas putida KT2440, Pseudomonas protegens Pf-5, and Pseudomonas putida S12), siderophore secretion is higher during growth on gluconeogenic substrates than during growth on glycolytic substrates. In response to Fe limitation, we capture decreased flux toward the tricarboxylic acid (TCA) cycle during the metabolism of glycolytic substrates but, due to carbon recycling to the TCA cycle via enhanced anaplerosis, the metabolism of gluconeogenic substrates results in an increase in both siderophore secretion (up to threefold) and Fe extraction (up to sixfold) from soil minerals. During simultaneous feeding on the different substrate types, Fe deficiency triggers a hierarchy in substrate utilization, which is facilitated by changes in protein abundances for substrate uptake and initial catabolism. Rerouted metabolism further promotes favorable fluxes in the TCA cycle and the gluconeogenesis–anaplerosis nodes, despite decrease in several proteins in these pathways, to meet carbon and energy demands for siderophore precursors in accordance with increased proteins for siderophore biosynthesis. Hierarchical carbon metabolism thus serves as a critical survival strategy during the metal nutrient deficiency.more » « less
-
Zhang, Ying (Ed.)ABSTRACT Treponema pallidum, the causative agent of syphilis, poses a significant global health threat. Its strict reliance on host-derived nutrients and difficulties inin vitrocultivation have impeded detailed metabolic characterization. In this study, we present iTP251, the first genome-scale metabolic model ofT. pallidum, reconstructed and extensively curated to capture its unique metabolic features. These refinements included the curation of key reactions such as pyrophosphate-dependent phosphorylation and pathways for nucleotide synthesis, amino acid synthesis, and cofactor metabolism. The model demonstrated high predictive accuracy, validated by a MEMOTE score of 92%. To further enhance its predictive capabilities, we developed ec-iTP251, an enzyme-constrained version of iTP251, incorporating enzyme turnover rate and molecular weight information for all reactions having gene-protein-reaction associations. Ec-iTP251 provides detailed insights into protein allocation across carbon sources, showing strong agreement with proteomics data (Pearson’s correlation of 0.88) in the central carbon pathway. Moreover, the thermodynamic analysis revealed that lactate uptake serves as an additional ATP-generating strategy to utilize unused proteomes, albeit at the cost of reducing the driving force of the central carbon pathway by 27%. Subsequent analysis identified glycerol-3-phosphate dehydrogenase as an alternative electron sink, compensating for the absence of a conventional electron transport chain while maintaining cellular redox balance. These findings highlightT. pallidum’s metabolic adaptations for survival and redox balance in nutrient-limited, extracellular host environments, providing a foundation for future research into its unique bioenergetics. IMPORTANCEThis study advances our understanding ofTreponema pallidum, the syphilis-causing pathogen, through the reconstruction of iTP251, the first genome-scale metabolic model for this organism, and its enzyme-constrained version, ec-iTP251. The work addresses the challenges of studyingT. pallidum, an extracellular, host-adapted pathogen, due to its strict dependence on host-derived nutrients and challenges inin vitrocultivation. Validated with strong agreement to proteomics data, the model demonstrates high predictive reliability. Key insights include unique metabolic adaptations such as lactate uptake for ATP production and alternative redox-balancing mechanisms. These findings provide a robust framework for future studies aimed at unraveling the pathogen's survival strategies and identifying potential metabolic vulnerabilities.more » « less
-
Abstract Understanding how plants grow is critical for agriculture and fundamental for illuminating principles of multicellular development. Here, we apply desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to the chemical mapping of the developing maize root. This technique reveals a range of small molecule distribution patterns across the gradient of stem cell differentiation in the root. To understand the developmental logic of these patterns, we examine tricarboxylic acid (TCA) cycle metabolites. In both Arabidopsis and maize, we find evidence that elements of the TCA cycle are enriched in developmentally opposing regions. We find that these metabolites, particularly succinate, aconitate, citrate, and α-ketoglutarate, control root development in diverse and distinct ways. Critically, the developmental effects of certain TCA metabolites on stem cell behavior do not correlate with changes in ATP production. These results present insights into development and suggest practical means for controlling plant growth.more » « less
-
IntroductionPlants employ the Calvin-Benson cycle (CBC) to fix atmospheric CO2for the production of biomass. The flux of carbon through the CBC is limited by the activity and selectivity of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO). Alternative CO2fixation pathways that do not use RuBisCO to fix CO2have evolved in some anaerobic, autotrophic microorganisms. MethodsRather than modifying existing routes of carbon metabolism in plants, we have developed a synthetic carbon fixation cycle that does not exist in nature but is inspired by metabolisms of bacterial autotrophs. In this work, we build and characterize a condensed, reverse tricarboxylic acid (crTCA) cyclein vitroandin planta. ResultsWe demonstrate that a simple, synthetic cycle can be used to fix carbon in vitro under aerobic and mesophilic conditions and that these enzymes retain activity whenexpressed transientlyin planta. We then evaluate stable transgenic lines ofCamelina sativathat have both phenotypic and physiologic changes. TransgenicC. sativaare shorter than controls with increased rates of photosynthetic CO2assimilation and changes in photorespiratory metabolism. DiscussionThis first iteration of a build-test-learn phase of the crTCA cycle provides promising evidence that this pathway can be used to increase photosynthetic capacity in plants.more » « less
An official website of the United States government
