Regulatory documents are complex and lengthy, making full compliance a challenging task for businesses. Similarly, privacy policies provided by vendors frequently fall short of the necessary legal standards due to insufficient detail. To address these issues, we propose a solution that leverages a Large Language Model (LLM) in combination with Semantic Web technology. This approach aims to clarify regulatory requirements and ensure that organizations’ privacy policies align with the relevant legal frameworks, ultimately simplifying the compliance process, reducing privacy risks, and improving efficiency. In this paper, we introduce a novel tool, the Privacy Policy Compliance Verification Knowledge Graph, referred to as PrivComp-KG. PrivComp-KG is designed to efficiently store and retrieve comprehensive information related to privacy policies, regulatory frameworks, and domain-specific legal knowledge. By utilizing LLM and Retrieval Augmented Generation (RAG), we can accurately identify relevant sections in privacy policies and map them to the corresponding regulatory rules. Our LLM-based retrieval system has demonstrated a high level of accuracy, achieving a correctness score of 0.9, outperforming other models in privacy policy analysis. The extracted information from individual privacy policies is then integrated into the PrivComp-KG. By combining this data with contextual domain knowledge and regulatory rules, PrivComp-KG can be queried to assess each vendor’s compliance with applicable regulations. We demonstrate the practical utility of PrivComp-KG by verifying the compliance of privacy policies across various organizations. This approach not only helps policy writers better understand legal requirements but also enables them to identify gaps in existing policies and update them in response to evolving regulations.
more »
« less
Automated Knowledge Framework for IoT Cybersecurity Compliance
Rapid expansion in the manufacture and use of Internet of Things (IoT) devices has introduced significant challenges in ensuring compliance with cybersecurity standards. To protect user data and privacy, all organizations providing IoT devices must adhere to complex guidelines such as the National Institute of Standards and Technology Inter agency Report (NIST IR) 8259, which defines essential cybersecurity guidelines for IoT manufacturers. However, interpreting and applying these rules from these guidelines and the privacy policies remains a significant challenge for companies. Thus, this project presents a novel approach to extract knowledge from NIST 8259 for creating semantically rich ontology mappings. Our ontology captures key compliance rules, which are stored in a knowledge graph (KG) that allows organizations to crosscheck and update privacy policy documents with ease. The KG also enables real-time querying using SPARQL and offers a transparent view of regulatory adherence for IoT manufacturers and users. By automating the process of verifying cybersecurity compliance, the framework ensures that companies remain aligned with NIST standards, eliminating manual checks and reducing the risk of non-compliance. We also demonstrate that compared to the baseline Large Language Models (LLMs), our proposed framework has more compliance accuracy, and is more efficient and scalable.
more »
« less
- Award ID(s):
- 2348147
- PAR ID:
- 10595643
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-6248-0
- Page Range / eLocation ID:
- 6336 to 6345
- Subject(s) / Keyword(s):
- IoT Cybersecurity NIST 8259 standards KGs regulatory compliance automated compliance LLMs privacy policies SPARQL
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As IoT device adoption grows, ensuring cybersecurity compliance with IoT standards, like National Institute of Standards and Technology Interagency (NISTIR) 8259A, has become increasingly complex. These standards are typically presented in lengthy, text-based formats that are difficult to process and query automatically. We built a knowledge graph to address this challenge to represent the key concepts, relationships, and references within NISTIR 8259A. We further integrate this knowledge graph with Retrieval-Augmented Generation (RAG) techniques that can be used by large language models (LLMs) to enhance the accuracy and contextual relevance of information retrieval. Additionally, we evaluate the performance of RAG using both graph-based queries and vector database embeddings. Our framework, implemented in Neo4j, was tested using multiple LLMs, including LLAMA2, Mistral-7B, and GPT-4. Our findings show that combining knowledge graphs with RAG significantly improves query precision and contextual relevance compared to unstructured vector-based retrieval methods. While traditional rule-based compliance tools were not evaluated in this study, our results demonstrate the advantages of structured, graph driven querying for security standards like NISTIR 8259A.more » « less
-
Big Data empowers the farming community with the information needed to optimize resource usage, increase productivity, and enhance the sustainability of agricultural practices. The use of Big Data in farming requires the collection and analysis of data from various sources such as sensors, satellites, and farmer surveys. While Big Data can provide the farming community with valuable insights and improve efficiency, there is significant concern regarding the security of this data as well as the privacy of the participants. Privacy regulations, such as the European Union’s General Data Protection Regulation (GDPR), the EU Code of Conduct on agricultural data sharing by contractual agreement, and the proposed EU AI law, have been created to address the issue of data privacy and provide specific guidelines on when and how data can be shared between organizations. To make confidential agricultural data widely available for Big Data analysis without violating the privacy of the data subjects, we consider privacy-preserving methods of data sharing in agriculture. Synthetic data that retains the statistical properties of the original data but does not include actual individuals’ information provides a suitable alternative to sharing sensitive datasets. Deep learning-based synthetic data generation has been proposed for privacy-preserving data sharing. However, there is a lack of compliance with documented data privacy policies in such privacy-preserving efforts. In this study, we propose a novel framework for enforcing privacy policy rules in privacy-preserving data generation algorithms. We explore several available agricultural codes of conduct, extract knowledge related to the privacy constraints in data, and use the extracted knowledge to define privacy bounds in a privacy-preserving generative model. We use our framework to generate synthetic agricultural data and present experimental results that demonstrate the utility of the synthetic dataset in downstream tasks. We also show that our framework can evade potential threats, such as re-identification and linkage issues, and secure data based on applicable regulatory policy rules.more » « less
-
Internet of Things (IoT) device manufacturers provide little information to consumers about their security and data handling practices. Therefore, IoT consumers cannot make informed purchase choices around security and privacy. While prior research has found that consumers would likely consider security and privacy when purchasing IoT devices, past work lacks empirical evidence as to whether they would actually pay more to purchase devices with enhanced security and privacy. To fill this gap, we conducted a two-phase incentive compatible online study with 180 Prolific participants. We measured the impact of five security and privacy factors (e.g., access control) on participants’ purchase behaviors when presented individually or together on an IoT label. Participants were willing to pay a significant premium for devices with better security and privacy practices. The biggest price differential we found was for de-identified rather than identifiable cloud storage. Mainly due to its usability challenges, the least valuable improvement for participants was to have multi-factor authentication as opposed to passwords. Based on our findings, we provide recommendations on creating more effective IoT security and privacy labeling programs.more » « less
-
null (Ed.)Consumer Internet of Things (IoT) devices are extremely popular, providing users with rich and diverse functionalities, from voice assistants to home appliances. These functionalities often come with significant privacy and security risks, with notable recent large-scale coordinated global attacks disrupting large service providers. Thus, an important first step to address these risks is to know what IoT devices are where in a network. While some limited solutions exist, a key question is whether device discovery can be done by Internet service providers that only see sampled flow statistics. In particular, it is challenging for an ISP to efficiently and effectively track and trace activity from IoT devices deployed by its millions of subscribers---all with sampled network data. In this paper, we develop and evaluate a scalable methodology to accurately detect and monitor IoT devices at subscriber lines with limited, highly sampled data in-the-wild. Our findings indicate that millions of IoT devices are detectable and identifiable within hours, both at a major ISP as well as an IXP, using passive, sparsely sampled network flow headers. Our methodology is able to detect devices from more than 77% of the studied IoT manufacturers, including popular devices such as smart speakers. While our methodology is effective for providing network analytics, it also highlights significant privacy consequences.more » « less
An official website of the United States government

