skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 14, 2026

Title: Accurate machine learning of rate coefficients for state-to-state transitions in molecular collisions
We present an algorithm that combines quantum scattering calculations with probabilistic machine-learning models to predict quantum dynamics rate coefficients for a large number of state-to-state transitions in molecule–molecule collisions much faster than with direct solutions of the Schrödinger equation. By utilizing the predictive power of Gaussian process regression with kernels, optimized to make accurate predictions outside of the input parameter space, the present strategy reduces the computational cost by about 75%, with an accuracy within 5%. Our method uses temperature dependences of rate coefficients for transitions from the isolated states of initial rotational angular momentum j, determined via explicit calculations, to predict the temperature dependences of rate coefficients for other values of j. The approach, demonstrated here for rovibrational transitions of SiO due to thermal collisions with H2, uses different prediction models and is thus adaptive to various time and accuracy requirements. The procedure outlined in this work can be used to extend multiple inelastic molecular collision databases without exponentially large computational resources required for conventional rigorous quantum dynamics calculations.  more » « less
Award ID(s):
2409497 1806180
PAR ID:
10595708
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
162
Issue:
2
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. We present new calculations of collision cross sections for state-to-state transitions between the rotational states in an H 2 O + H 2 O system, which are used to generate a new database of collisional rate coefficients for cometary and planetary applications. Methods. Calculations were carried out using a mixed quantum-classical theory approach that is implemented in the code MQCT. The large basis set of rotational states used in these calculations permits us to predict thermally averaged cross sections for 441 transitions in para- and ortho-H 2 O in a broad range of temperatures. Results. It is found that all state-to-state transitions in the H 2 O + H 2 O system split into two well-defined groups, one with higher cross-section values and lower energy transfer, which corresponds to the dipole-dipole driven processes. The other group has smaller cross sections and higher energy transfer, driven by higher-order interaction terms. We present a detailed analysis of the theoretical error bars, and we symmetrized the state-to-state transition matrixes to ensure that excitation and quenching processes for each transition satisfy the principle of microscopic reversibility. We also compare our results with other data available from the literature for H 2 O + H 2 O collisions. 
    more » « less
  2. ABSTRACT Fine-structure transitions can be involved in various processes including photon absorption, charge transfer, and inelastic collisions between ions, electrons, and neutral atoms. We present fine-structure excitation and relaxation cross-sections for the collisions of the first few members of the carbon isoelectronic sequence (C, N+ and O2 +) with atomic hydrogen calculated using quantum-mechanical methods. For C, the scattering theory and computational approach is verified by comparison with previous calculations. The rate coefficients for the collisional processes are obtained. For N+ and O2 +, the transitions correspond to the lines [O iii] 52 μm, [O iii] 88 μm, [N ii] 122 μm, and [N ii] 205 μm, observed in the far-infrared in the local universe and more recently in high-redshift galaxies using radio interferometry. The influence of different potentials on the cross-sections and rate coefficients are demonstrated. 
    more » « less
  3. Although the dynamics of collisions between a molecule and a solid surface are ultimately quantum mechanical, decohering effects owing to the large number of interacting degrees of freedom typically obscure the wavelike nature of these events. However, a partial decoupling of internal molecular motion from external degrees of freedom can reveal striking interference effects despite significant momentum exchange between the molecule and the bath of surface vibrations. We report state-prepared and state-resolved measurements of methane scattering from a room-temperature gold surface that demonstrate total destructive interference between molecular states related by a reflection symmetry operation. High-contrast interference effects prevail for all processes investigated, including vibrationally excited and vibrationally inelastic collisions. The results demonstrate the distinctly quantum mechanical effect of discrete symmetries in molecular collision dynamics. 
    more » « less
  4. Abstract We calculate cross sections for fine-structure transitions of Ne+, Ar+, Ne2+, and Ar2+in collisions with atomic hydrogen by using quantum-mechanical methods. Relaxation rate coefficients are calculated for temperatures up to 10,000 K. The temperature-dependent critical densities for the relaxation of Ne+, Ar+, Ne2+, and Ar2+in collisions with H have been determined and compared to the critical densities for collisions with electrons. The present calculations will be useful for studies utilizing the infrared lines [Neii] 12.8, [Neiii] 15.6, [Neiii] 36.0, [Arii] 6.99, [Ariii] 8.99, and [Ariii] 21.8μm as diagnostics of, for example, planetary nebulae and star formation. 
    more » « less
  5. Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions in oscillatory flows must be known. However, the current modeling approaches usually rely on correlations for minor loss coefficients obtained in steady flows, which may not accurately represent minor losses in sound waves. In this study, high-fidelity computational fluid dynamics simulations are undertaken for acoustic oscillations at transitions between tubes of different diameters filled with cryogenic hydrogen. The variable parameters include the tube diameter ratios, temperatures (80 K and 30 K), and acoustic impedances corresponding to standing and traveling waves. Computational simulation results are compared with reduced-order acoustic models to develop corrections for minor loss coefficients that describe transition losses in sound waves more precisely. The present findings can improve the accuracy of design calculations for acoustic cryocoolers and predictions of Taconis instabilities. 
    more » « less