Taconis oscillations represent excitation of acoustic modes due to large thermal gradients inside narrow tubes penetrating cryogenic vessels from a warm ambient environment. These oscillations are usually harmful, as they may drastically increase heat leakage into cryogenic vessels and result in strong vibrations of measuring instruments. Placing a porous material inside a tube with a goal to increase acoustic damping or attaching a small resonator to the main tube are some of the possible ways to suppress or mitigate Taconis effects. However, when the porous inserts are positioned in locations with large temperature gradients or the resonator parameters are selected incorrectly, these components may augment thermal-to-acoustic energy conversion and enhance Taconis oscillations. A low-amplitude thermoacoustic model has been extended and applied in this study to determine the effects of the insert location and pore radius, as well as the resonator dimensions, on the onset of Taconis phenomena in a hydrogen-filled tube of relevance to lines used in cryogenic hydrogen storage tanks. The presented findings can assist cryogenic specialists interested in suppressing or exciting Taconis oscillations.
more »
« less
This content will become publicly available on June 1, 2026
Acoustic Losses in Cryogenic Hydrogen at Transitions Between Tubes of Different Diameters
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions in oscillatory flows must be known. However, the current modeling approaches usually rely on correlations for minor loss coefficients obtained in steady flows, which may not accurately represent minor losses in sound waves. In this study, high-fidelity computational fluid dynamics simulations are undertaken for acoustic oscillations at transitions between tubes of different diameters filled with cryogenic hydrogen. The variable parameters include the tube diameter ratios, temperatures (80 K and 30 K), and acoustic impedances corresponding to standing and traveling waves. Computational simulation results are compared with reduced-order acoustic models to develop corrections for minor loss coefficients that describe transition losses in sound waves more precisely. The present findings can improve the accuracy of design calculations for acoustic cryocoolers and predictions of Taconis instabilities.
more »
« less
- PAR ID:
- 10598533
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Hydrogen
- Volume:
- 6
- ISSN:
- 2673-4141
- Page Range / eLocation ID:
- 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In graphene devices, the electronic drift velocity can easily exceed the speed of sound in the material at moderate current biases. Under these conditions, the electronic system can efficiently amplify acoustic phonons, leading to an exponential growth of sound waves in the direction of the carrier flow. Here, we show that such phonon amplification can significantly modify the electrical properties of graphene devices. We observe a superlinear growth of the resistivity in the direction of the carrier flow when the drift velocity exceeds the speed of sound — resulting in a sevenfold increase over a distance of 8 µm. The resistivity growth is observed at carrier densities away from the Dirac point and is enhanced at cryogenic temperatures. We develop a theoretical model for the resistivity growth due to the electrical amplification of acoustic phonons — reaching frequencies up to 2.2 THz — where the wavelength is controlled by gate-tunable transitions across the Fermi surface. These findings provide a route to on-chip high-frequency sound generation and detection in the THz frequency range.more » « less
-
Fritts et al. (J. Fluid Mech., vol. xx, 2022, xx) describe a direct numerical simulation of interacting Kelvin–Helmholtz instability (KHI) billows arising due to initial billow cores that exhibit variable phases along their axes. Such KHI exhibit strong ‘tube and knot’ dynamics identified in early laboratory studies by Thorpe ( Geophys. Astrophys. Fluid Dyn. , vol. 34, 1985, pp. 175–199). Thorpe ( Q.J.R. Meteorol. Soc. , vol. 128, 2002, pp. 1529–1542) noted that these dynamics may be prevalent in the atmosphere, and they were recently identified in atmospheric observations at high altitudes. Tube and knot dynamics were found by Fritts et al. ( J. Fluid. Mech. , 2022) to drive stronger and faster turbulence transitions than secondary instabilities of individual KH billows. Results presented here reveal that KHI tube and knot dynamics also yield energy dissipation rates $$\sim$$ 2–4 times larger as turbulence arises and that remain $$\sim$$ 2–3 times larger to later stages of the flow evolution, compared with those of secondary convective instabilities (CI) and secondary KHI accompanying KH billows without tube and knot influences. Elevated energy dissipation rates occur due to turbulence transitions by tube and knot dynamics arising on much larger scales than secondary CI and KHI where initial KH billows are misaligned. Tube and knot dynamics also excite large-scale Kelvin ‘twist waves’ that cause vortex tube and billow core fragmentation, more energetic cascades of similar interactions to smaller scales and account for the strongest energy dissipation events accompanying such KH billow evolutions.more » « less
-
Acoustic traps use forces exerted by sound waves to confine and transport small objects. The dynamics of an object moving in the force landscape of an acoustic trap can be significantly influenced by the inertia of the surrounding fluid medium. These inertial effects can be observed by setting a trapped object in oscillation and tracking it as it relaxes back to mechanical equilibrium in its trap. Large deviations from Stokesian dynamics during this process can be explained quantitatively by accounting for boundary-layer effects in the fluid. The measured oscillations of a perturbed particle then can be used not only to calibrate the trap but also to characterize the particle.more » « less
-
Abstract Dynamically unstable katabatic Prandtl slope flows are studied via numerical simulations and spectral analysis. Results confirm the presence of aperiodic temporal and spatial oscillations in the flow fields due to the emergence and propagation of flow instabilities. Dampeden masseoscillations are observed to dominate the initial oscillatory stage of laminar katabatic slope flows. Stationary longitudinal rolls, which are dominant at shallow slopes, are observed to meander with increasing stratification perturbation parameter and the average distance between the rolls exhibits a strong dependence on slope inclination for slope angles less than . At much steeper slopes, traveling slope waves emerge and they are transported at the mean jet velocity. Both types of instability rolls coexist for certain combinations of dimensionless parameters, forming intricate structures that break into smaller eddies as the flow becomes more dynamically unstable. In the dynamically unstable nonturbulent regime,en masseoscillations are insignificant, but their normalised frequency can be used to discern the type of flow instability.more » « less