skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Using Subducting Plate Motion to Constrain Cascadia Slab Geometry and Interface Strength
Abstract Subduction zones are home to multiple geohazards driven by the evolution of the regional tectonics, including earthquakes, volcanic eruptions and landslides. Past evolution builds the present‐day structure of the margin, while the present‐day configuration of the system determines the state‐of‐stress in which individual hazardous events manifest. Regional simulations of subduction zones provide a tool to synthesize the tectonic history of a region and investigate how geologic features lead to variations in the state of stress across the subduction system. However, it is challenging to design regional models that provide a force‐balance that is consistent with the large‐scale motion of surrounding tectonic plates while also not over‐constraining the solution. Here, we present new models for the Cascadia subduction zone that meet these criteria and demonstrate how the motion of the subducting Juan de Fuca plate can be used to determine the along‐strike variations in the viscous (long‐term) coupling across the plate boundary. All successful models require lower viscous coupling in the northern section of the trench compared to the central and southern sections. However, due to uncertainties in the geometry of the Cascadia slab, we find that there is a trade‐off between along‐strike variation in viscous coupling and slab shape. Better constraints on the slab shape, and/or use of other observations are needed to resolve this trade‐off. The approach presented here provides a framework for further exploring how geologic features in the overriding plate and the properties of the plate boundary region affect the state‐of‐stress across this and other subduction zones.  more » « less
Award ID(s):
1948902 1925677
PAR ID:
10595793
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
26
Issue:
5
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The transition from subduction to transform motion along horizontal terminations of trenches is associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the NE Lau back-arc basin is associated with transform motion along the northern plate boundary and asymmetric slab rollback. Here, we address the fundamental question: how does this subduction-transform motion influence the structural and magmatic evolution of the back-arc region? To answer this, we undertake the first comprehensive study of the geology and geodynamics of this region through analyses of morphotectonics (remote-predictive geologic mapping) and fault kinematics interpreted from ship-based multibeam bathymetry and Centroid-Moment Tensor data. Our results highlight two notable features of the NE Lau Basin: 1) the occurrence of widely distributed off-axis volcanism, in contrast to typical ridge-centered back-arc volcanism, and 2) fault kinematics dominated by shallow-crustal strike slip-faulting (rather than normal faulting) extending over ∼120 km from the transform boundary. The orientations of these strike-slip faults are consistent with reactivation of earlier-formed normal faults in a sinistral megashear zone. Notably, two distinct sets of Riedel megashears are identified, indicating a recent counter-clockwise rotation of part of the stress field in the back-arc region closest to the arc. Importantly, the Riedel structures identified in this study directly control the development of complex volcanic-compositional provinces, which are characterized by variably-oriented spreading centers, off-axis volcanic ridges, extensive lava flows, and point-source rear-arc volcanoes. This study adds to our understanding of the geologic and structural evolution of modern backarc systems, including the association between subduction-transform motions and the siting and style of seafloor volcanism. 
    more » « less
  2. The importance of slab–slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific–Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu–Bonin–Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu–Bonin–Mariana slabs. When weak back-arc regions are included, slab–slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab–slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present-day observations. 
    more » « less
  3. Abstract The dip angles of slabs are among the clearest characteristics of subduction zones, but the factors that control them remain obscure. Here, slab dip angles and subduction parameters, including subduction duration, the nature of the overriding plate, slab age, and convergence rate, are determined for 153 transects along subduction zones for the present day. We present a comprehensive tabulation of subduction duration based on isotopic ages of arc initiation and stratigraphic, structural, plate tectonic and seismic indicators of subduction initiation. We present two ages for subduction zones, a long‐term age and a reinitiation age. Using cross correlation and multivariate regression, we find that (1) subduction duration is the primary parameter controlling slab dips with slabs tending to have shallower dips at subduction zones that have been in existence longer; (2) the long‐term age of subduction duration better explains variation of shallow dip than reinitiation age; (3) overriding plate nature could influence shallow dip angle, where slabs below continents tend to have shallower dips; (4) slab age contributes to slab dip, with younger slabs having steeper shallow dips; and (5) the relations between slab dip and subduction parameters are depth dependent, where the ability of subduction duration and overriding plate nature to explain observed variation decreases with depth. The analysis emphasizes the importance of subduction history and the long‐term regional state of a subduction zone in determining slab dip and is consistent with mechanical models of subduction. 
    more » « less
  4. This study addresses a significant gap in understanding the features of the south‐central Cascadia subduction zone, a region characterized by complex geologic, tectonic, and seismic transitions both offshore and onshore. Unlike other segments along this margin, this area lacks a 3‐D velocity model to delineate its structural and geological features on a fine scale. To address this void, we developed a high‐resolution 3‐D P‐wave velocity model using active source seismic data from ship‐borne seismic shots recorded on temporary and permanent onshore seismic stations and ocean‐bottom seismometers. Our model shows velocity variations across the region with distinct velocity‐depth profiles for the Siletz, Franciscan, and Klamath terranes in the overlying plate. We identified seaward dipping high‐velocity static backstops associated with the Siletz and Klamath terranes, situated near the shoreline and further inland, respectively. Regions of reduced crustal velocity are associated with crustal faults. Moreover, there is significant along‐strike depth variation in the subducting slab, which is about 4 km deeper near the thick, dense Siletz terrane and becomes shallower near the predominantly less‐dense Franciscan terrane. This highlights a sudden tectonic and geologic transition at the southern boundary of the Siletz terrane. Our velocity model also indicates slightly increased hydration, though still minimal, in both the oceanic crust and the upper mantle of the subducting plate compared to other parts of the margin. 
    more » « less
  5. Abstract The details of subduction zone locking place constraints on the characteristics of megathrust events. Due to the lack of significant present‐day seismicity along the Cascadia subduction interface, geodetic data are used to assess subduction locking along the margin. We isolate the subduction signal from other tectonic signals within the Cascadia GPS field, to assess the details of plate‐interface locking. Apparent coupling determined by a simple homogenous elastic half‐space inversion cannot everywhere reproduce the subduction component of the GPS field. Consequently, we explore the relationships among upper‐plate strength, locking depth and the resulting surface velocity signal using 2D finite element models. When the upper plate is composed of a weak material, trenchward of a strong backstop, we find that the down‐dip limit of locking relative to the location of the weak‐to‐strong transition controls how upper‐plate deformation is spatially distributed. If locking extends into the stronger material, as observed in central Cascadia, the surface velocity field propagates farther inland than expected from a simple homogeneous elastic model. In contrast, in southern Cascadia, because locking terminates within the weak accretionary margin, upper‐plate shortening is localized within the weaker material, particularly in the region between the end of locking and the strong Klamath terrane. This behavior provides a possible mechanism for producing the high (geodetic and permanent) uplift rates, plate‐motion‐parallel shortening, and crustal exhumation observed in many active and fossil subduction zones. 
    more » « less