skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Toda Bracket Convergence Theorem for Multiplicative Spectral Sequences
Abstract Moss’ theorem, which relates Massey products in the$$E_r$$ E r -page of the classical Adams spectral sequence to Toda brackets of homotopy groups, is one of the main tools for calculating Adams differentials. Working in an arbitrary symmetric monoidal stable simplicial model category, we prove a general version of Moss’ theorem which applies to spectral sequences that arise from filtrations compatible with the monoidal structure. This involves the study of Massey products and Toda brackets in a non-strictly associative context. The theorem has broad applications, e.g., to the computation of the motivic slice spectral sequence and other colocalization towers.  more » « less
Award ID(s):
2427220
PAR ID:
10595800
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Peking Mathematical Journal
ISSN:
2096-6075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the$$\mathbb {F}_2$$ F 2 -synthetic Adams spectral sequence. We obtain new computational information about$$\mathbb {C}$$ C -motivic and classical stable homotopy groups. 
    more » « less
  2. Abstract The double Dyck path algebra$$\mathbb {A}_{q,t}$$ A q , t and its polynomial representation first arose as a key figure in the proof of the celebrated Shuffle Theorem of Carlsson and Mellit. A geometric formulation for an equivalent algebra$$\mathbb {B}_{q,t}$$ B q , t was then given by the second author and Carlsson and Mellit using the K-theory of parabolic flag Hilbert schemes. In this article, we initiate the systematic study of the representation theory of the double Dyck path algebra$$\mathbb {B}_{q,t}$$ B q , t . We define a natural extension of this algebra and study its calibrated representations. We show that the polynomial representation is calibrated, and place it into a large family of calibrated representations constructed from posets satisfying certain conditions. We also define tensor products and duals of these representations, thus proving (under suitable conditions) the category of calibrated representations is generically monoidal. As an application, we prove that tensor powers of the polynomial representation can be constructed from the equivariant K-theory of parabolic Gieseker moduli spaces. 
    more » « less
  3. We describe how power operations descend through homotopy limit spectral sequences. We apply this to describe how norms appear in the C 2 C_2 -equivariant Adams spectral sequence, to compute norms on π<#comment/> 0 \pi _0 of the equivariant K U KU -local sphere, and to compute power operations for the K ( 1 ) K(1) -local sphere. An appendix contains material on equivariant Bousfield localizations which may be of independent interest. 
    more » « less
  4. Abstract We prove that the classical map comparing Adams’ cobar construction on the singular chains of a pointed space and the singular cubical chains on its based loop space is a quasi-isomorphism preserving explicitly defined monoidal$$E_\infty $$-coalgebra structures. This contribution extends to its ultimate conclusion a result of Baues, stating that Adams’ map preserves monoidal coalgebra structures. 
    more » « less
  5. Abstract We study the family of irreducible modules for quantum affine 𝔰 𝔩 n + 1 {\mathfrak{sl}_{n+1}}whose Drinfeld polynomials are supported on just one node of the Dynkin diagram. We identify all the prime modules in this family and prove a unique factorization theorem. The Drinfeld polynomials of the prime modules encode information coming from the points of reducibility of tensor products of the fundamental modules associated to A m {A_{m}}with m n {m\leq n}. These prime modules are a special class of the snake modules studied by Mukhin and Young. We relate our modules to the work of Hernandez and Leclerc and define generalizations of the category 𝒞 - {\mathscr{C}^{-}}. This leads naturally to the notion of an inflation of the corresponding Grothendieck ring. In the last section we show that the tensor product of a (higher order) Kirillov–Reshetikhin module with its dual always contains an imaginary module in its Jordan–Hölder series and give an explicit formula for its Drinfeld polynomial. Together with the results of [D. Hernandez and B. Leclerc,A cluster algebra approach toq-characters of Kirillov–Reshetikhin modules,J. Eur. Math. Soc. (JEMS) 18 2016, 5, 1113–1159] this gives examples of a product of cluster variables which are not in the span of cluster monomials. We also discuss the connection of our work with the examples arising from the work of [E. Lapid and A. Mínguez,Geometric conditions for \square-irreducibility of certain representations of the general linear group over a non-archimedean local field,Adv. Math. 339 2018, 113–190]. Finally, we use our methods to give a family of imaginary modules in type D 4 {D_{4}}which do not arise from an embedding of A r {A_{r}}with r 3 {r\leq 3}in D 4 {D_{4}}. 
    more » « less