skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Total power operations in spectral sequences
We describe how power operations descend through homotopy limit spectral sequences. We apply this to describe how norms appear in the C 2 C_2 -equivariant Adams spectral sequence, to compute norms on π<#comment/> 0 \pi _0 of the equivariant K U KU -local sphere, and to compute power operations for the K ( 1 ) K(1) -local sphere. An appendix contains material on equivariant Bousfield localizations which may be of independent interest.  more » « less
Award ID(s):
1839968
PAR ID:
10513250
Author(s) / Creator(s):
Publisher / Repository:
TAMS
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe in terms of generators and relations the ring structure of the R O ( C 2 ) RO(C_2) -graded C 2 C_2 -equivariant stable stems π<#comment/> ⋆<#comment/> C 2 \pi _\star ^{C_2} modulo the ideal of all nilpotent elements. As a consequence, we also record the ring structure of the homotopy groups of the rational C 2 C_2 -equivariant sphere π<#comment/> ⋆<#comment/> C 2 ( S Q ) \pi _\star ^{C_2}(\mathbb {S}_\mathbb {Q})
    more » « less
  2. We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of the K ( 1 ) K(1) -local sphere S K ( 1 ) \mathbb {S}_{K(1)} at the prime 2 2 , in particular realizing the non- 2 2 -adic rational element 1 + ε<#comment/> ∈<#comment/> π<#comment/> 0 S K ( 1 ) 1+\varepsilon \in \pi _0\mathbb {S}_{K(1)} as a “semiadditive cardinality.” As a further application, we compute and clarify certain power operations in π<#comment/> 0 S K ( 1 ) \pi _0\mathbb {S}_{K(1)}
    more » « less
  3. In this paper we consider which families of finite simple groups G G have the property that for each ϵ<#comment/> > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | ≥<#comment/> N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ<#comment/> | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n →<#comment/> ∞<#comment/> n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ<#comment/> \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g ∈<#comment/> G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i ∈<#comment/> w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | →<#comment/> ∞<#comment/> |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L ∞<#comment/> L^{\infty } norm. 
    more » « less
  4. We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map f W l o c 1 , n ( Ω , R n ) f \in W^{1,n}_{\mathrm {loc}}(\Omega , \mathbb {R}^n) from a domain Ω R n \Omega \subset \mathbb {R}^n satisfies the estimate | D f ( x ) | n K J f ( x ) + Σ ( x ) | f ( x ) y 0 | n \lvert Df(x) \rvert ^n \leq K J_f(x) + \Sigma (x) \lvert f(x) - y_0 \rvert ^n at almost every x Ω x \in \Omega for some K 1 K \geq 1 , y 0 R n y_0\in \mathbb {R}^n and Σ L l o c 1 + ε ( Ω ) \Sigma \in L^{1+\varepsilon }_{\mathrm {loc}}(\Omega ) , then f 1 { y 0 } f^{-1}\{y_0\} is discrete, the local index i ( x , f ) i(x, f) is positive in f 1 { y 0 } f^{-1}\{y_0\} , and every neighborhood of a point of f 1 { y 0 } f^{-1}\{y_0\} is mapped to a neighborhood of y 0 y_0 . Assuming this estimate for a fixed K K at every y 0 R n y_0 \in \mathbb {R}^n is equivalent to assuming that the map f f is K K -quasiregular, even if the choice of Σ \Sigma is different for each y 0 y_0 . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of K K -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem. 
    more » « less
  5. We say a null-homologous knot K K in a 3 3 -manifold Y Y has Property G, if the Thurston norm and fiberedness of the complement of K K is preserved under the zero surgery on K K . In this paper, we will show that, if the smooth 4 4 -genus of K ×<#comment/> { 0 } K\times \{0\} (in a certain homology class) in ( Y ×<#comment/> [ 0 , 1 ] ) #<#comment/> N C P 2 ¯<#comment/> (Y\times [0,1])\#N\overline {\mathbb CP^2} , where Y Y is a rational homology sphere, is smaller than the Seifert genus of K K , then K K has Property G. When the smooth 4 4 -genus is 0 0 , Y Y can be taken to be any closed, oriented 3 3 -manifold. 
    more » « less