Abstract This paper studies the large scale limits of multi-type invariant distributions and Busemann functions of planar stochastic growth models in the Kardar–Parisi–Zhang (KPZ) class. We identify a set of sufficient hypotheses for convergence of multi-type invariant measures of last-passage percolation (LPP) models to the stationary horizon (SH), which is the unique multi-type stationary measure of the KPZ fixed point. Our limit theorem utilizes conditions that are expected to hold broadly in the KPZ class, including convergence of the scaled last-passage process to the directed landscape. We verify these conditions for the six exactly solvable models whose scaled bulk versions converge to the directed landscape, as shown by Dauvergne and Virág. We also present a second, more general, convergence theorem with future applications to polymer models and particle systems. Our paper is the first to show convergence to the SH without relying on information about the structure of the multi-type invariant measures of the prelimit models. These results are consistent with the conjecture that the SH is the universal scaling limit of multi-type invariant measures in the KPZ class.
more »
« less
Coalescence and total‐variation distance of semi‐infinite inverse‐gamma polymers
Abstract We show that two semi‐infinite positive temperature polymers coalesce on the scale predicted by KPZ (Kardar–Parisi–Zhang) universality. The two polymer paths have the same asymptotic direction and evolve in the same environment, independently until coalescence. If they start at distance apart, their coalescence occurs on the scale . It follows that the total variation distance of two semi‐infinite polymer measures decays on this same scale. Our results are upper and lower bounds on probabilities and expectations that match, up to constant factors and occasional logarithmic corrections. Our proofs are done in the context of the solvable inverse‐gamma polymer model, but without appeal to integrable probability. With minor modifications, our proofs give also bounds on transversal fluctuations of the polymer path. As the free energy of a directed polymer is a discretization of a stochastically forced viscous Hamilton–Jacobi equation, our results suggest that the hyperbolicity phenomenon of such equations obeys the KPZ exponent.
more »
« less
- Award ID(s):
- 2152362
- PAR ID:
- 10595837
- Publisher / Repository:
- London Mathematical Society
- Date Published:
- Journal Name:
- Journal of the London Mathematical Society
- Volume:
- 110
- Issue:
- 1
- ISSN:
- 0024-6107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> For any unitary conformal field theory in two dimensions with the central chargec, we prove that, if there is a nontrivial primary operator whose conformal dimension ∆ vanishes in some limit on the conformal manifold, the Zamolodchikov distancetto the limit is infinite, the approach to this limit is exponential ∆ = exp(−αt+O(1)), and the decay rate obeys the universal boundsc−1/2≤α≤ 1. In the limit, we also find that an infinite tower of primary operators emerges without a gap above the vacuum and that the conformal field theory becomes locally a tensor product of a sigma-model in the large radius limit and a compact theory. As a corollary, we establish a part of the Distance Conjecture about gravitational theories in three-dimensional anti-de Sitter space. In particular, our bounds onαindicate that the emergence of exponentially light states is inevitable as the moduli field corresponding totrolls beyond the Planck scale along the steepest path and that this phenomenon can begin already at the curvature scale of the bulk geometry. We also comment on implications of our bounds for gravity in asymptotically flat spacetime by taking the flat space limit and compare with the Sharpened Distance Conjecture.more » « less
-
Abstract We consider the directed mean curvature flow on the plane in a weak Gaussian random environment. We prove that, when started from a sufficiently flat initial condition, a rescaled and recentred solution converges to the Cole–Hopf solution of the KPZ equation. This result follows from the analysis of a more general system of nonlinear SPDEs driven by inhomogeneous noises, using the theory of regularity structures. However, due to inhomogeneity of the noise, the “black box” result developed in the series of works cannot be applied directly and requires significant extension to infinite‐dimensional regularity structures. Analysis of this general system of SPDEs gives two more interesting results. First, we prove that the solution of the quenched KPZ equation with a very strong force also converges to the Cole–Hopf solution of the KPZ equation. Second, we show that a properly rescaled and renormalised quenched Edwards–Wilkinson model in any dimension converges to the stochastic heat equation.more » « less
-
Abstract We consider point-to-point last-passage times to every vertex in a neighbourhood of size $$\delta N^{\nicefrac {2}{3}}$$ δ N 2 3 at distance N from the starting point. The increments of the last-passage times in this neighbourhood are shown to be jointly equal to their stationary versions with high probability that depends only on $$\delta $$ δ . Through this result we show that (1) the $$\text {Airy}_2$$ Airy 2 process is locally close to a Brownian motion in total variation; (2) the tree of point-to-point geodesics from every vertex in a box of side length $$\delta N^{\nicefrac {2}{3}}$$ δ N 2 3 going to a point at distance N agrees inside the box with the tree of semi-infinite geodesics going in the same direction; (3) two point-to-point geodesics started at distance $$N^{\nicefrac {2}{3}}$$ N 2 3 from each other, to a point at distance N , will not coalesce close to either endpoint on the scale N . Our main results rely on probabilistic methods only.more » « less
An official website of the United States government

