There is increasing interest in the alpha polytype of Ga2O3 because of its even larger bandgap than the more studied beta polytype, but in common with the latter, there is no viable p-type doping technology. One option is to use p-type oxides to realize heterojunctions and NiO is one of the candidate oxides. The band alignment of sputtered NiO on α-Ga2O3 remains type II, staggered gap for annealing temperatures up to 600 °C, showing that this is a viable approach for hole injection in power electronic devices based on the alpha polytype of Ga2O3. The magnitude of both the conduction and valence band offsets increases with temperature up to 500 °C, but then is stable to 600 °C. For the as-deposited NiO/α-Ga2O3 heterojunction, ΔEV = −2.8 and ΔEC = 1.6 eV, while after 600 °C annealing the corresponding values are ΔEV = −4.4 and ΔEC = 3.02 eV. These values are 1−2 eV larger than for the NiO/β-Ga2O3 heterojunction.
more »
« less
This content will become publicly available on July 1, 2026
Band alignment of Cr2MnO4 on (2¯01) and (001) β-Ga2O3
p-type Cr2MnO4 with bandgap 3.01 eV was sputter deposited onto (2¯01) and (001) n-type or semi-insulating β-Ga2O3.The heterojunction of p-type CrMnO4 on n-type Ga2O3 is found to be type II, staggered gap, i.e., the band offsets are such that both the conduction and valence band edges of Ga2O3 are lower in energy than those of the Cr2MnO4. This creates a staggered band alignment, which can facilitate the separation of photogenerated electron-hole pairs. The valence band edge of Cr2MnO4 is higher than that of Ga2O3 by 1.82–1.93 eV depending on substrate orientation and doping, which means that holes in Cr2MnO4 would have a lower energy barrier to overcome to move into Ga2O3. Conversely, the conduction band edge of Cr2MnO4 is higher than that of Ga2O3 by 0.13–0.30 eV depending on substrate doping and orientation, which would create a barrier for electrons in Ga2O3 to move into Cr2MnO4. This heterojunction looks highly promising for p-n junction formation for advanced Ga2O3-based power rectifiers.
more »
« less
- PAR ID:
- 10595925
- Publisher / Repository:
- AVS
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology A
- Volume:
- 43
- Issue:
- 4
- ISSN:
- 0734-2101
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is increasing interest in α-polytype Ga2O3 for power device applications, but there are few published reports on dielectrics for this material. Finding a dielectric with large band offsets for both valence and conduction bands is especially challenging given its large bandgap of 5.1 eV. One option is HfSiO4 deposited by atomic layer deposition (ALD), which provides conformal, low damage deposition and has a bandgap of 7 eV. The valence band offset of the HfSiO4/Ga2O3 heterointerface was measured using x-ray photoelectron spectroscopy. The single-crystal α-Ga2O3 was grown by halide vapor phase epitaxy on sapphire substrates. The valence band offset was 0.82 ± 0.20 eV (staggered gap, type-II alignment) for ALD HfSiO4 on α-Ga0.2O3. The corresponding conduction band offset was −2.72 ± 0.45 eV, providing no barrier to electrons moving into Ga2O3.more » « less
-
Abstract The band alignment of sputtered NiO on β -Ga 2 O 3 was measured by x-ray photoelectron spectroscopy for post-deposition annealing temperatures up to 600 °C. The band alignment is type II, staggered gap in all cases, with the magnitude of the conduction and valence band offsets increasing monotonically with annealing temperature. For the as-deposited heterojunction, Δ E V = −0.9 eV and Δ E C = 0.2 eV, while after 600 °C annealing the corresponding values are Δ E V = −3.0 eV and Δ E C = 2.12 eV. The bandgap of the NiO was reduced from 3.90 eV as-deposited to 3.72 eV after 600 °C annealing, which accounts for most of the absolute change in Δ E V −Δ E C . Differences in thermal budget may be at least partially responsible for the large spread in band offsets reported in the literature for this heterojunction. Other reasons could include interfacial disorder and contamination. Differential charging, which could shift peaks by different amounts and could potentially be a large source of error, was not observed in our samples.more » « less
-
Diamond electronics has attracted attention for high power and high frequency device applications. Cubic boron nitride (c-BN) may be considered as a suitable dielectric layer for electron channel diamond metal–insulator–semiconductor field effect transistors (MISFETs) provided that its valence band edge can be positioned above that of diamond. This study reports experimental measurement of the valence band offset (VBO) between c-BN and nitrogen-plasma terminated boron-doped diamond (111). Nitrogen plasma processing was used to produce C–N bonding at the diamond surface. Electron cyclotron resonance plasma enhanced chemical vapor deposition was then used to deposit epitaxial c-BN films on the N-terminated diamond substrate, as confirmed by cross-sectional high-resolution electron microscopy. X-ray and ultraviolet photoemission spectroscopies indicated that the valence band maximum of c-BN is positioned 0.4 eV above that of diamond resulting in a type II staggered band alignment. This result is consistent with theoretical predictions of the VBO between the two materials in the (111) surface orientation, indicating that c-BN with C–N interface bonding can be used as a dielectric layer for electron channel diamond (111) MISFET devices.more » « less
-
The band alignments of two candidate dielectrics for ScAlN, namely, SiO2 and Al2O2, were obtained by x-ray photoelectron spectroscopy. We compared the effect of deposition method on the valence band offsets of both sputtered and atomic layer deposition films of SiO2 and Al2O3 on Sc0.27Al0.73 N (bandgap 5.1 eV) films. The band alignments are type I (straddled gap) for SiO2 and type II (staggered gap) for Al2O3. The deposition methods make a large difference in relative valence band offsets, in the range 0.4–0.5 eV for both SiO2 and Al2O3. The absolute valence band offsets were 2.1 or 2.6 eV for SiO2 and 1.5 or 1.9 eV for Al2O3 on ScAlN. Conduction band offsets derived from these valence band offsets, and the measured bandgaps were then in the range 1.0–1.1 eV for SiO2 and 0.30–0.70 eV for Al2O3. These latter differences can be partially ascribed to changes in bandgap for the case of SiO2 deposited by the two different methods, but not for Al2O3, where the bandgap as independent of deposition method. Since both dielectrics can be selectively removed from ScAlN, they are promising as gate dielectrics for transistor structures.more » « less
An official website of the United States government
