skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on April 29, 2026

Title: Direct Evidence for r -process Nucleosynthesis in Delayed MeV Emission from the SGR 1806–20 Magnetar Giant Flare
Abstract The origin of heavy elements synthesized through the rapid neutron capture process (r-process) has been an enduring mystery for over half a century. J. Cehula et al. recently showed that magnetar giant flares, among the brightest transients ever observed, can shock heat and eject neutron star crustal material at high velocity, achieving the requisite conditions for anr-process. A. Patel et al. confirmed anr-process in these ejecta using detailed nucleosynthesis calculations. Radioactive decay of the freshly synthesized nuclei releases a forest of gamma-ray lines, Doppler broadened by the high ejecta velocitiesv ≳ 0.1cinto a quasi-continuous spectrum peaking around 1 MeV. Here, we show that the predicted emission properties (light curve, fluence, and spectrum) match a previously unexplained hard gamma-ray signal seen in the aftermath of the famous 2004 December giant flare from the magnetar SGR 1806–20. This MeV emission component, rising to peak around 10 minutes after the initial spike before decaying away over the next few hours, is direct observational evidence for the synthesis of ∼10−6Mofr-process elements. The discovery of magnetar giant flares as confirmedr-process sites, contributing at least ∼1%–10% of the total Galactic abundances, has implications for the Galactic chemical evolution, especially at the earliest epochs probed by low-metallicity stars. It also implicates magnetars as potentially dominant sources of heavy cosmic rays. Characterization of ther-process emission from giant flares by resolving decay line features offers a compelling science case for NASA’s forthcoming COSI nuclear spectrometer, as well as next-generation MeV telescope missions.  more » « less
Award ID(s):
2406637
PAR ID:
10596216
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IoP
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
984
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present nucleosynthesis and light-curve predictions for a new site of the rapid neutron capture process (r-process) from magnetar giant flares (GFs). Motivated by observations indicating baryon ejecta from GFs, J. Cehula et al. proposed that mass ejection occurs after a shock is driven into the magnetar crust during the GF. We confirm using nuclear reaction network calculations that these ejecta synthesize moderate yields of third-peakr-process nuclei and more substantial yields of lighterr-nuclei, while leaving a sizable abundance of free neutrons in the outermost fastest expanding ejecta layers. The finalr-process mass fraction and distribution are sensitive to the relative efficiencies ofα-capture andn-capture freeze-outs. We use our nucleosynthesis output in a semianalytic model to predict the light curves of novae breves, the transients following GFs powered by radioactive decay. For a baryonic ejecta mass similar to that inferred of the 2004 Galactic GF from SGR 1806-20, we predict a peak UV/optical luminosity of ∼1039–1040erg s−1at ∼10–15 minutes, rendering such events potentially detectable to several Mpc following a gamma-ray trigger by wide-field transient monitors such as ULTRASAT/UVEX. The peak luminosity and timescale of the transient increase with the GF strength due to the larger ejecta mass. Although GFs likely contribute 1%–10% of the total Galacticr-process budget, their short delay-times relative to star formation make them an attractive source to enrich the earliest generations of stars. 
    more » « less
  2. Abstract The heaviest elements in the universe are synthesized through rapid neutron capture (r-process) in extremely neutron-rich outflows. Neutron star mergers were established as an importantr-process source through the multimessenger observation of GW170817. Collapsars were also proposed as a potentially major source of heavy elements; however, this is difficult to probe through optical observations due to contamination by other emission mechanisms. Here we present observational constraints onr-process nucleosynthesis by collapsars based on radio follow-up observations of nearby long gamma-ray bursts (GRBs). We make the hypothesis that late-time radio emission arises from the collapsar wind ejecta responsible for forgingr-process elements, and consider the constraints that can be set on this scenario using radio observations of a sample of Swift/Burst Alert Telescope GRBs located within 2 Gpc. No radio counterpart was identified in excess of the radio afterglow of the GRBs in our sample. This gives the strictest limit to the collapsarr-process contribution of ≲0.2Mfor GRB 060505 and GRB 05826, under the models we considered. Our results additionally constrain energy injection by a long-lived neutron star remnant in some of the considered GRBs. While our results are in tension with collapsars being the majority ofr-process production sites, the ejecta mass and velocity profile of collapsar winds, and the emission parameters, are not yet well modeled. As such, our results are currently subject to large uncertainties, but further theoretical work could greatly improve them. 
    more » « less
  3. Abstract We show that a minimum-mass neutron star undergoes delayed explosion after mass removal from its surface. We couple the Newtonian hydrodynamics to a nuclear reaction network of ∼4500 isotopes to study the nucleosynthesis and neutrino emission during the explosion. An electron antineutrino burst with a peak luminosity of ∼3 × 1050erg s−1is emitted while the ejecta is heated to ∼109K. A robustr-process nucleosynthesis is realized in the ejecta. Lanthanides and heavy elements near the second and thirdr-process peaks are synthesized as end products of nucleosynthesis, suggesting that subminimal neutron star explosions could be an important source of solar chemical elements. 
    more » « less
  4. Abstract Magnetar giant flares are rare and highly energetic phenomena observed in the transient sky whose emission mechanisms are still not fully understood. Depending on the nature of the excited modes of the magnetar, they are also expected to emit gravitational waves (GWs), which may bring unique information about the dynamics of the excitation. A few magnetar giant flares have been proposed to be associated with short gamma-ray bursts. In this paper we use a new gravitational-wave search algorithm to revisit the possible emission of GWs from four magnetar giant flares within 5 Mpc. While no gravitational-wave signals were observed, we discuss the future prospects of detecting signals with more sensitive gravitational-wave detectors. In particular, we show that galactic magnetar giant flares that emit at least 1% of their electromagnetic energy as GWs could be detected during the planned observing run of the LIGO and Virgo detectors at design sensitivity, with even better prospects for third-generation detectors. 
    more » « less
  5. Abstract Gamma-ray bursts (GRBs) have historically been divided into two classes. Short-duration GRBs are associated with binary neutron star mergers (NSMs), while long-duration bursts are connected to a subset of core-collapse supernovae (SNe). GRB 211211A recently made headlines as the first long-duration burst purportedly generated by an NSM. The evidence for an NSM origin was excess optical and near-infrared emission consistent with the kilonova observed after the gravitational-wave-detected NSM GW170817. Kilonovae derive their unique electromagnetic signatures from the properties of the heavy elements synthesized by rapid neutron capture (ther-process) following the merger. Recent simulations suggest that the “collapsar” SNe that trigger long GRBs may also producer-process elements. While observations of GRB 211211A and its afterglow rule out an SN typical of those that follow long GRBs, an unusual collapsar could explain both the duration of GRB 211211A and ther-process-powered excess in its afterglow. We use semianalytic radiation transport modeling to evaluate low-mass collapsars as the progenitors of GRB 211211A–like events. We compare a suite of collapsar models to the afterglow-subtracted emission that followed GRB 211211A, and find the best agreement for models with high kinetic energies and an unexpected pattern of56Ni enrichment. We discuss how core-collapse explosions could produce such ejecta, and how distinct our predictions are from those generated by more straightforward kilonova models. We also show that radio observations can distinguish between kilonovae and the more massive collapsar ejecta we consider here. 
    more » « less