skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arctic curves of the T-system with slanted initial data
Abstract We study theT-system of type A ∞ , also known as the octahedron recurrence/equation, viewed as a 2 + 1 -dimensional discrete evolution equation. Generalizing earlier work on arctic curves for the Aztec Diamond obtained from solutions of the octahedron recurrence with ‘flat’ initial data, we consider initial data along parallel ‘slanted’ planes perpendicular to an arbitrary admissible direction ( r , s , t ) ∈ Z + 3 . The corresponding solutions of theT-system are interpreted as partition functions of dimer models on some suitable ‘pinecone’ graphs introduced by Bousquet–Mélou, Propp, and West in 2009. TheT-system formulation and some exact solutions in uniform or periodic cases allow us to explore the thermodynamic limit of the corresponding dimer models and to derive exact arctic curves separating the various phases of the system. This direct approach bypasses the standard general theory of dimers using the Kasteleyn matrix approach and uses instead the theory of Analytic Combinatorics in Several Variables, by focusing on a linear system obeyed by the dimer density generating function.  more » « less
Award ID(s):
1937241
PAR ID:
10596220
Author(s) / Creator(s):
;
Publisher / Repository:
Purpose-led publishing
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Volume:
57
Issue:
33
ISSN:
1751-8113
Page Range / eLocation ID:
335201
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We measure the metallicities of 374 red giant branch (RGB) stars in the isolated, quenched dwarf galaxy Tucana using Hubble Space Telescope narrowband (F395N) calcium H and K imaging. Our sample is a factor of ∼7 larger than what is available from previous studies. Our main findings are as follows. (i) A global metallicity distribution function (MDF) with 〈 [Fe/H] 〉 = − 1.55 − 0.04 + 0.04 and σ [Fe/H] = 0.54 − 0.03 + 0.03 . (ii) A metallicity gradient of −0.54 ± 0.07 dex R e − 1 (−2.1 ± 0.3 dex kpc−1) over the extent of our imaging (∼2.5Re), which is steeper than literature measurements. Our finding is consistent with predicted gradients from the publicly available FIRE-2 simulations, in which bursty star formation creates stellar population gradients and dark matter cores. (iii) Tucana’s bifurcated RGB has distinct metallicities: a blue RGB with 〈 [Fe/H] 〉 = − 1.78 − 0.06 + 0.06 and σ [Fe/H] = 0.44 − 0.06 + 0.07 and a red RGB with 〈 [Fe/H] 〉 = − 1.08 − 0.07 + 0.07 and σ [Fe/H] = 0.42 − 0.06 + 0.06 . (iv) At fixed stellar mass, Tucana is more metal-rich than Milky Way satellites by ∼0.4 dex, but its blue RGB is chemically comparable to the satellites. Tucana’s MDF appears consistent with star-forming isolated dwarfs, though MDFs of the latter are not as well populated. (v) About 2% of Tucana’s stars have [Fe/H] < −3% and 20% have [Fe/H] > −1. We provide a catalog for community spectroscopic follow-up. 
    more » « less
  2. Abstract A search for resonances in top quark pair ( t t ― ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at s = 13 TeV , corresponding to 138 fb−1. The analysis explores the invariant mass of the t t ― system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic t t ― threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( 1 S 0 [ 1 ] ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for 1 S 0 [ 1 ] toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 − 1.4 + 1.2 pb
    more » « less
  3. Abstract We present the analysis of a microlensing event KMT-2022-BLG-0086 of which the overall light curve is not described by a binary-lens single-source (2L1S) model, which suggests the existence of an extra lens or an extra source. We found that the event is best explained by the binary-lens binary-source (2L2S) model, but the 2L2S model is only favored over the triple-lens single-source (3L1S) model by Δχ2 â‰ƒ 9. Although the event has noticeable anomalies around the peak of the light curve, they are not enough covered to constrain the angular Einstein radiusθE, thus we only measure the minimum angular Einstein radius θ E , min . From the Bayesian analysis, it is found that that the binary lens system is a binary star with masses of ( m 1 , m 2 ) = ( 0.4 6 − 0.25 + 0.35 M ⊙ , 0.7 5 − 0.55 + 0.67 M ⊙ ) at a distance of D L = 5.8 7 − 1.79 + 1.21 kpc, while the triple lens system is a brown dwarf or a massive giant planet in a low-mass binary-star system with masses of ( m 1 , m 2 , m 3 ) = ( 0.4 3 − 0.35 + 0.41 M ⊙ , 0.05 6 − 0.047 + 0.055 M ⊙ , 20.8 4 − 17.04 + 20.20 M J ) at a distance of D L = 4.0 6 − 3.28 + 1.39 kpc, indicating a disk lens system. The 2L2S model yields the relative lens-source proper motion ofμrel â‰¥ 4.6 mas yr−1that is consistent with the Bayesian result, whereas the 3L1S model yieldsμrel â‰¥ 18.9 mas yr−1, which is more than three times larger than that of a typical disk object of ∼6 mas yr−1and thus is not consistent with the Bayesian result. This suggests that the event is likely caused by the binary-lens binary-source model. 
    more » « less
  4. Abstract Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ( t t ¯ ) events produced in proton–proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb−1. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observableDis derived from the top quark spin-dependent parts of the t t ¯ production density matrix and measured in the region of the t t ¯ production threshold. Values of D < − 1 / 3 are evidence of entanglement andDis observed (expected) to be − 0.480 − 0.029 + 0.026 ( − 0.467 − 0.029 + 0.026 ) at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within t t ¯ pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced. 
    more » « less
  5. Abstract M dwarfs are common host stars to exoplanets but often lack atmospheric abundance measurements. Late-M dwarfs are also good analogs to the youngest substellar companions, which share similarTeff∼ 2300–2800 K. We present atmospheric analyses for the M7.5 companion HIP 55507 B and its K6V primary star with Keck/KPIC high-resolution (R∼ 35,000)K-band spectroscopy. First, by including KPIC relative radial velocities between the primary and secondary in the orbit fit, we improve the dynamical mass precision by 60% and find M B = 88.0 − 3.2 + 3.4 M Jup , putting HIP 55507 B above the stellar–substellar boundary. We also find that HIP 55507 B orbits its K6V primary star with a = 38 − 3 + 4 au ande= 0.40 ± 0.04. From atmospheric retrievals of HIP 55507 B, we measure [C/H] = 0.24 ± 0.13, [O/H] = 0.15 ± 0.13, and C/O = 0.67 ± 0.04. Moreover, we strongly detect13CO (7.8σsignificance) and tentatively detect H 2 18 O (3.7σsignificance) in the companion’s atmosphere and measure 12 CO / 13 CO = 98 − 22 + 28 and H 2 16 O / H 2 18 O = 240 − 80 + 145 after accounting for systematic errors. From a simplified retrieval analysis of HIP 55507 A, we measure 12 CO / 13 CO = 79 − 16 + 21 and C 16 O / C 18 O = 288 − 70 + 125 for the primary star. These results demonstrate that HIP 55507 A and B have consistent12C/13C and16O/18O to the <1σlevel, as expected for a chemically homogeneous binary system. Given the similar flux ratios and separations between HIP 55507 AB and systems with young substellar companions, our results open the door to systematically measuring13CO and H 2 18 O abundances in the atmospheres of substellar or even planetary-mass companions with similar spectral types. 
    more » « less