Abstract Along‐strike variation of the Laurentian rifted margin and the Appalachian orogen has long been recognized in the geologic record. We investigated the manifestation of this along‐strike variation at depth by generating scattered wavefield migration profiles from four dense seismic arrays deployed across the Appalachian orogen at different latitudes. All profiles exhibit a similar crustal thickness decrease of 15–20 km from the Mesoproterozoic Grenville Province to the Paleozoic Appalachian accreted terranes, but the Moho architecture differs dramatically along strike. The profiles beneath the central and southern Appalachians show a smoothly varying Moho geometry; in contrast, there is an abrupt Moho depth offset beneath the New England Appalachians. This contrast in Moho geometry may result from variations in the Laurentian rifted margin architecture, changes in Taconic orogeny subduction polarity, and greater crustal shortening during the Acadian‐Neoacadian orogeny in southern New England and the Alleghanian orogeny in the central and southern Appalachians. A first‐order along‐strike transition in the behavior of Appalachian orogenic processes is located between the central and New England Appalachians.
more »
« less
Mantle Displacement During Reactivation of Accreted Terranes in the New England Appalachians
The Taconic thrust belt in New England is the type locality of the Ordovician Taconic orogeny, the result of partial subduction of the rifted Laurentian margin beneath the Gondwanan-derived Moretown terrane (MT) and the Shelburne Falls arc. Evidence for Ordovician deformation and metamorphism is only preserved in rocks of the Laurentian margin; Taconic deformation and metamorphism in the MT and suture zone were overprinted by Devonian Acadian tectonism. New thermochronological data from the Taconic thrust belt indicate that many faults were active during the Silurian and Devonian, well after the Taconic orogeny. Crust under accreted terranes in New England is much thinner (~30 km) than below the Grenville belt along the Laurentian margin (~45 km), and Li et al. (2018) noted a particularly abrupt change in crustal thickness in southwestern New England near the suture between Laurentia and the MT. New seismic evidence indicates that the abrupt offset in Moho depth in CT and MA occurs east of an anisotropic region (~25 km wide and ~15 km thick) that lies between the shallow Moho of the MT and the deep Moho of Laurentia. The Taconic and Acadian orogens are narrower in southern New England than they are to the north, suggesting greater crustal shortening, and high-grade metamorphic rocks exposed in southern New England indicate greater erosion of overlying crust. Hillenbrand et al. (2021) proposed that an Acadian plateau existed in southern New England from 380 to 330 Ma and that plateau collapse after 330 Ma led to the abrupt Moho offset. We suggest that an indenter in southern New England focused the Acadian collision between Laurentia and Avalonia leading to greater crustal shortening and uplift than elsewhere the Appalachians. The east-dipping suture zone and Neoproterozoic normal faults cutting the leading edge of Laurentia were reactivated as west-directed thrust faults. Further, the diffuse fault zone that displaced the MT and the leading edge of the Laurentian margin penetrated the crust and displaced the Moho beneath the MT creating a double Moho near the suture. The anisotropic zone between the double Moho region is likely composed of crustal and mantle rocks bounded by faults. It is unclear how far east rifted Grenville crust extends under the MT; it is possible that the MT is no longer above its original lithospheric mantle.
more »
« less
- Award ID(s):
- 2147463
- PAR ID:
- 10596288
- Publisher / Repository:
- AGU Fall Meeting Abstracts
- Date Published:
- Journal Name:
- Transactions American Geophysical Union
- ISSN:
- 2379-6723
- Format(s):
- Medium: X
- Location:
- Washington, DC
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Pine Hill thrust, a western frontal thrust of the Green Mountain massif in southern Vermont, is characterized by reverse faults that place Precambrian basement rocks over mid-Ordovician rocks. Based on cross-cutting relationships, it has been considered a late-stage Taconic thrust. However, recent investigations in the western front of the Sutton Mountains, Green Mountain massif, and Berkshire massif of southern Quebec, Vermont, and Massachusetts, respectively, suggest fault displacement at 420 Ma and younger. Therefore, motion on these faults may instead be associated with the late Salinic or early Acadian orogeny. This study investigates the hypothesis that the Pine Hill thrust records deformational events associated with the late Salinic and/or Acadian orogenies. Preliminary studies from fieldwork and microstructural analysis of slabbed samples from transects across the Pine Hill thrust, where the lower Cambrian Dalton Formation is mapped as thrust over the Upper Ordovician Ira Formation, reveal at least four generations of foliation. The oldest tectonic foliation, S1, is parallel to primary compositional layering (S0) and is associated with isoclinal F1 folds. Moving from the Dalton Formation in the hanging wall towards the fault zone, S1 becomes progressively transposed into S2, marked by metamorphic compositional layering. Closer to the fault, S2 is crenulated, and S3 emerges as the dominant foliation, becoming the only foliation exhibited by the phyllonites in the fault zone. Finally, the youngest foliation, S4, is a localized crenulation cleavage developed in more pelitic material. These preliminary results suggest a complex deformation history, possibly involving multiple phases of post-Taconic motion on the fault during subsequent orogeneses. Further microstructural analysis and geochronology of these deformation fabrics will help establish the timing of deformation and its tectonic significance, helping to correlate surface geology with results from New England Seismic Transect (NEST) imaging of crustal and mantle lithospheric structure in the northern New England Appalachians.more » « less
-
Abstract Previous geophysical studies in the New England Appalachians identified a ∼15 km offset in crustal thickness near the surface boundary between Laurentia and the accreted terranes. Here, we investigate crustal structure using data from a denser array: New England Seismic Transects experiment, which deployed stations spaced ∼10 km apart across the Laurentia‐Moretown terrane suture in northwestern Massachusetts. We used receiver function (RF) analysis to detectPtoSVconverted waves and identified multiple interfaces beneath the transect. We also implemented a harmonic decomposition analysis to identify features at or near the Moho with dipping and/or anisotropic character. Beneath the Laurentian margin, the Ps converted phase from the Moho arrives almost 5.5 s after the initialPwave, whereas beneath the Appalachian terranes, the pulse arrives at 3.5 s, corresponding to ∼48 and ∼31 km depth, respectively. The character of the RF traces beneath stations in the middle of our array suggests a complex transitional zone with dipping and/or anisotropic boundaries extending at least ∼30 km. This extension is measured in our profiles and perpendicular to the suture. We propose one possible crustal geometry model that is consistent with our observations and results from previous studies.more » « less
-
Abstract Seismic anisotropy beneath eastern North America, as expressed in shear wave splitting observations, has been attributed to plate motion‐parallel shear in the asthenosphere, resulting in fast axes aligned with the plate motion. However, deviations of fast axes from plate motion directions are observed near major tectonic boundaries of the Appalachians, indicating contributions from lithospheric anisotropy associated with past tectonic processes. In this study, we conduct anisotropic receiver function (RF) analysis using data from a dense seismic array traversing the New England Appalachians in Connecticut to examine anisotropic layers in the crust and upper mantle and correlate them with past tectonic processes as well as present‐day mantle flow. We use the harmonic decomposition method to separate directionally‐dependent variations of RFs and focus on features with the same harmonic signals observed across multiple stations. Within the crust, there are multiple features that may be correlated with stratification in the Hartford Basin, faults in the Taconic thrust belt, shear zones formed during Salinic/Acadian terrane accretion events, and orogen‐parallel crustal flow in the Acadian orogenic plateau. We apply a Bayesian inversion method to obtain quantitative constraints on the direction and strength of intra‐crustal anisotropy beneath the Hartford Basin. In the upper mantle, we identify a fossil shear zone possibly formed during oblique subduction of Rheic Ocean lithosphere. We also find evidence for a plate motion‐parallel flow zone in the asthenosphere that is likely disturbed by mantle upwelling near the southern margin of the Northern Appalachian Anomaly in the eastern part of the study area.more » « less
-
Seismic waves with different propagation and oscillation directions can exhibit different velocities when going through a medium with some directional properties; this phenomenon is called seismic anisotropy. Seismic anisotropy observed beneath eastern North America is often attributed to present-day flow in the upper mantle. The mantle flow causes shear waves oscillating in the direction of flow (e.g., in the direction of North America plate motion) to travel faster than those that travel in other directions. However, this pattern does not hold true for some regions along the Appalachian orogen, suggesting that past tectonic events can result in long-lived, ‘frozen-in’ anisotropy in the lithosphere, which modifies the predicted anisotropic behavior beneath these regions. In this study, we investigate sources of seismic anisotropy beneath southern New England using a method based on directionally dependent variations of P-wave to S-wave conversions at interfaces with contrasts in anisotropy. This method can separate signals caused by different anisotropic features and constrain the depth distribution of anisotropy. Within the crust there are multiple features that may be correlated with stratification in the Hartford Basin, faults in the Taconic thrust belt, shear zones formed during Salinic/Acadian terrane accretion events, and orogen-parallel crustal flow in the Acadian orogenic plateau. We apply a Bayesian inversion method to obtain quantitative constraints on the direction and strength of intra-crustal anisotropy beneath the Hartford Basin. In the upper mantle, we identify a fossil shear zone possibly formed during oblique subduction of Rheic Ocean lithosphere. We also find evidence for a plate motion-parallel flow zone in the asthenosphere that is likely disturbed by mantle upwelling near the southern margin of the Northern Appalachian Anomaly in the eastern part of the study area.more » « less
An official website of the United States government

