skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Widely tunable room temperature semiconductor terahertz source
We present a widely tunable, monolithic terahertz source based on intracavity difference frequency generation within a mid-infrared quantum cascade laser at room temperature. A three-section ridge waveguide laser design with two sampled grating sections and a distributed-Bragg section is used to achieve the terahertz (THz) frequency tuning. Room temperature single mode THz emission with a wide tunable frequency range of 2.6–4.2 THz (∼47% of the central frequency) and THz power up to 0.1 mW is demonstrated, making such device an ideal candidate for THz spectroscopy and sensing.  more » « less
Award ID(s):
2149908
PAR ID:
10596301
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Applied Physics Letters
Volume:
105
Issue:
20
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Razeghi, Manijeh; Baranov, Alexei N. (Ed.)
    Quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared and terahertz range due to its rapid development in power, efficiency, and spectral covering range. Owing to its unique intersubband transition and fast carrier lifetime, QCL possesses strong nonlinear susceptibilities that makes it the ideal platform for a variety of nonlinear optical generations. Among this, terahertz (THz) source based on difference-frequency generation (DFG) and frequency comb based on four wave mixing effect are the most exciting phenomena which could potentially revolutionize spectroscopy in mid-infrared (mid-IR) and THz spectral range. In this paper, we will briefly discuss the recent progress of our research. This includes high power high efficiency QCLs, high power room temperature THz sources based on DFG-QCL, room temperature THz frequency comb, and injection locking of high-power QCL frequency combs. The developed QCLs are great candidates as next generation mid-infrared source for spectroscopy and sensing. 
    more » « less
  2. Abstract A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy. 
    more » « less
  3. We report terahertz quantum cascade laser sources based on intra-cavity difference-frequency generation processed into double-metal waveguides with surface-grating outcouplers. Over 112 μW of peak power output is produced at room temperature at 1.9 THz. 
    more » « less
  4. We report room temperature terahertz (THz) quantum cascade laser sources with high power based on difference frequency generation. The device is Čerenkov phase matched and spectrally purified with an integrated dual-period distributed-feedback grating. Symmetric current injection and epilayer-down mounting of the device onto a patterned submount are used to improve the electrical uniformity and heat removal, respectively. The epilayer-down mounting also allows for THz anti-reflective coating to enhance the THz outcoupling efficiency. Single mode emission at 3.5 THz with a side-mode suppression ratio and output power up to 30 dB and 215 μW are obtained, respectively. 
    more » « less
  5. The year 2024 marks the 30-year anniversary of the quantum cascade laser (QCL), which is becoming the leading laser source in the mid-infrared (mid-IR) range. Since the first demonstration, QCL has undergone tremendous development in terms of the output power, wall plug efficiency, spectral coverage, wavelength tunability, and beam quality. Owing to its unique intersubband transition and fast gain features, QCL possesses strong nonlinearities that makes it an ideal platform for nonlinear photonics like terahertz (THz) difference frequency generation and direct frequency comb generation via four-wave mixing when group velocity dispersion is engineered. The feature of broadband, high-power, and low-phase noise of QCL combs is revolutionizing mid-IR spectroscopy and sensing by offering a new tool measuring multi-channel molecules simultaneously in the μs time scale. While THz QCL difference frequency generation is becoming the only semiconductor light source covering 1–5 THz at room temperature. In this paper, we will introduce the latest research from the Center for Quantum Devices at Northwestern University and briefly discuss the history of QCL, recent progress, and future perspective of QCL research, especially for QCL frequency combs, room temperature THz QCL difference frequency generation, and major challenges facing QCL in the future. 
    more » « less