Abstract Reservoir computing (RC) offers efficient temporal data processing with a low training cost by separating recurrent neural networks into a fixed network with recurrent connections and a trainable linear network. The quality of the fixed network, called reservoir, is the most important factor that determines the performance of the RC system. In this paper, we investigate the influence of the hierarchical reservoir structure on the properties of the reservoir and the performance of the RC system. Analogous to deep neural networks, stacking sub-reservoirs in series is an efficient way to enhance the nonlinearity of data transformation to high-dimensional space and expand the diversity of temporal information captured by the reservoir. These deep reservoir systems offer better performance when compared to simply increasing the size of the reservoir or the number of sub-reservoirs. Low frequency components are mainly captured by the sub-reservoirs in later stage of the deep reservoir structure, similar to observations that more abstract information can be extracted by layers in the late stage of deep neural networks. When the total size of the reservoir is fixed, tradeoff between the number of sub-reservoirs and the size of each sub-reservoir needs to be carefully considered, due to the degraded ability of individual sub-reservoirs at small sizes. Improved performance of the deep reservoir structure alleviates the difficulty of implementing the RC system on hardware systems.
more »
« less
This content will become publicly available on April 11, 2026
Universality of Real Minimal Complexity Reservoir
Reservoir Computing (RC) models, a subclass of recurrent neural networks, are distinguished by their fixed, non-trainable input layer and dynamically coupled reservoir, with only the static readout layer being trained. This design circumvents the issues associated with backpropagating error signals through time, thereby enhancing both stability and training efficiency. RC models have been successfully applied across a broad range of application domains. Crucially, they have been demonstrated to be universal approximators of time-invariant dynamic filters with fading memory, under various settings of approximation norms and input driving sources.Simple Cycle Reservoirs (SCR) represent a specialized class of RC models with a highly constrained reservoir architecture, characterized by uniform ring connectivity and binary input-to-reservoir weights with an aperiodic sign pattern. For linear reservoirs, given the reservoir size, the reservoir construction has only one degree of freedom -- the reservoir cycle weight. Such architectures are particularly amenable to hardware implementations without significant performance degradation in many practical tasks. In this study we endow these observations with solid theoretical foundations by proving that SCRs operating in real domain are universal approximators of time-invariant dynamic filters with fading memory. Our results supplement recent research showing that SCRs in the complex domain can approximate, to arbitrary precision, any unrestricted linear reservoir with a non-linear readout. We furthermore introduce a novel method to drastically reduce the number of SCR units, making such highly constrained architectures natural candidates for low-complexity hardware implementations. Our findings are supported by empirical studies on real-world time series datasets.
more »
« less
- Award ID(s):
- 2350543
- PAR ID:
- 10596363
- Publisher / Repository:
- PKP Publishing Services Network
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 39
- Issue:
- 16
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 16622 to 16629
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A variety of advanced machine learning and deep learning algorithms achieve state-of-the-art performance on various temporal processing tasks. However, these methods are heavily energy inefficient—they run mainly on the power hungry CPUs and GPUs. Computing with Spiking Networks, on the other hand, has shown to be energy efficient on specialized neuromorphic hardware, e.g., Loihi, TrueNorth, SpiNNaker, etc. In this work, we present two architectures of spiking models, inspired from the theory of Reservoir Computing and Legendre Memory Units, for the Time Series Classification (TSC) task. Our first spiking architecture is closer to the general Reservoir Computing architecture and we successfully deploy it on Loihi; the second spiking architecture differs from the first by the inclusion of non-linearity in the readout layer. Our second model (trained with Surrogate Gradient Descent method) shows that non-linear decoding of the linearly extracted temporal features through spiking neurons not only achieves promising results, but also offers low computation-overhead by significantly reducing the number of neurons compared to the popular LSM based models—more than 40x reduction with respect to the recent spiking model we compare with. We experiment on five TSC datasets and achieve new SoTA spiking results (—as much as 28.607% accuracy improvement on one of the datasets), thereby showing the potential of our models to address the TSC tasks in a green energy-efficient manner. In addition, we also do energy profiling and comparison on Loihi and CPU to support our claims.more » « less
-
null (Ed.)The Reservoir Computing, a neural computing framework suited for temporal information processing, utilizes a dynamic reservoir layer for high-dimensional encoding, enhancing the separability of the network. In this paper, we exploit a Deep Learning (DL)-based detection strategy for Multiple-input, Multiple-output Orthogonal Frequency-Division Multiplexing (MIMO-OFDM) symbol detection. To be specific, we introduce a Deep Echo State Network (DESN), a unique hierarchical processing structure with multiple time intervals, to enhance the memory capacity and accelerate the detection efficiency. The resulting hardware prototype with the hybrid memristor-CMOS co-design provides in-memory computing and parallel processing capabilities, significantly reducing the hardware and power overhead. With the standard 180nm CMOS process and memristive synapses, the introduced DESN consumes merely 105mW of power consumption, exhibiting 16.7% power reduction compared to shallow ESN designs even with more dynamic layers and associated neurons. Furthermore, numerical evaluations demonstrate the advantages of the DESN over state-of-the-art detection techniques in the literate for MIMO-OFDM systems even with a very limited training set, yielding a 47.8% improvement against conventional symbol detection techniques.more » « less
-
Abstract Humans increasingly dominate Earth’s natural freshwater ecosystems, but biomass production of modified ecosystems is rarely studied. We estimate potential fish total standing stock in USA reservoirs is 3.4 billion (B) kg, and approximate annual secondary production is 4.5 B kg y−1. We also observe varied and non-linear trends in reservoir fish biomass over time, thus previous assertions that reservoir fisheries decline over time are not universal. Reservoirs are globally relevant pools of freshwater fisheries, in part due to their immense limnetic footprint and spatial extent. This study further shows that reservoir ecosystems play major roles in food security and fisheries conservation. We encourage additional effort be expended to effectively manage reservoir environments for the good of humanity, biodiversity, and fish conservation.more » « less
-
Vision Transformers (ViTs) have evolved in the field of computer vision by transitioning traditional Convolutional Neural Networks (CNNs) into attention-based architectures. This architecture processes input images as sequences of patches. ViTs achieve enhanced performance in many tasks such as image classification and object detection due to their ability to capture global dependencies within input data. While their software implementations are widely adopted, deploying ViTs on hardware introduces several challenges. These include fault tolerance in the presence of hardware failures, real-time reliability, and high computational requirements. Permanent faults that are in processing elements, interconnections, or memory subsystems lead to incorrect computations and degrading system performance. This paper proposes a fault-tolerant hardware implementation of ViTs to overcome these challenges. This hardware implementation integrates real-time fault detection and recovery mechanisms. The architecture includes four primary units: patch embedding, encoder, decoder, and Multi Layer Perceptron (MLP) which are supported by fault-tolerant components such as lightweight recompute units, a centralized Built-In Self-Test (BIST), and a learning-based decision-making system using machine learning model 'decision tree'. These units are interconnected through a centralized global buffer for efficient data transfer, ensuring seamless operation even under fault conditions.more » « less
An official website of the United States government
