skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Calculating spectra by sequential filtering
We expand on the method of sequential filtering for calculating the spectra of inhomogeneous fields. Sadek and Aluie [Phys. Rev. Fluids 3, 124610 (2018)] showed that the filtering kernel has to have at least p vanishing moments to extract a power-law spectrum k−α with α<p+2 by low-pass filtering. Here, we show that sequential high-pass filtering allows for extracting steeper spectra with α<2p+3 using the same pth order kernel. For example, the spectrum of a field that is shallower than k−5 can be extracted by sequential high-pass filtering the field using any first-order kernel such as a Gaussian or top-hat. Finally, we demonstrate how the second-order structure function fails to capture spectral peaks because it cannot detect scaling that is too shallow.  more » « less
Award ID(s):
2123496 2206380
PAR ID:
10596396
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Renewable and Sustainable Energy
Date Published:
Journal Name:
Journal of Renewable and Sustainable Energy
Volume:
17
Issue:
1
ISSN:
1941-7012
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present constraints on the massive star and ionized gas properties for a sample of 62 star-forming galaxies at z ∼ 2.3. Using BPASS stellar population models, we fit the rest-UV spectra of galaxies in our sample to estimate age and stellar metallicity which, in turn, determine the ionizing spectrum. In addition to the median properties of well-defined subsets of our sample, we derive the ages and stellar metallicities for 30 high-SNR individual galaxies – the largest sample of individual galaxies at high redshift with such measurements. Most galaxies in this high-SNR subsample have stellar metallicities of 0.001 < Z* < 0.004. We then use Cloudy + BPASS photoionization models to match observed rest-optical line ratios and infer nebular properties. Our high-SNR subsample is characterized by a median ionization parameter and oxygen abundance, respectively, of log (U)med = −2.98 ± 0.25 and 12 + log (O/H)med = 8.48 ± 0.11. Accordingly, we find that all galaxies in our sample show evidence for α-enhancement. In addition, based on inferred log (U) and 12 + log (O/H) values, we find that the local relationship between ionization parameter and metallicity applies at z ∼ 2. Finally, we find that the high-redshift galaxies most offset from the local excitation sequence in the BPT diagram are the most α-enhanced. This trend suggests that α-enhancement resulting in a harder ionizing spectrum at fixed oxygen abundance is a significant driver of the high-redshift galaxy offset on the BPT diagram relative to local systems. The ubiquity of α-enhancement among z ∼ 2.3 star-forming galaxies indicates important differences between high-redshift and local galaxies that must be accounted for in order to derive physical properties at high redshift. 
    more » « less
  2. null (Ed.)
    ABSTRACT We quantify the effect of radio frequency interference (RFI) on measurements of the 21-cm power spectrum during the Epoch of Reionization (EoR). Specifically, we investigate how the frequency structure of RFI source emission generates contamination in higher order wave modes, which is much more problematic than smooth-spectrum foreground sources. Using a relatively optimistic EoR model, we find that even a single relatively dim RFI source can overwhelm the EoR power spectrum signal of $$\sim 10\, {\rm mK}^2$$ for modes $$0.1 \ \lt k \lt 2 \, h\, {\rm Mpc}^{-1}$$. If the total apparent RFI flux density in the final power spectrum integration is kept below 1 mJy, an EoR signal resembling this optimistic model should be detectable for modes $$k \lt 0.9\, h\, {\rm Mpc}^{-1}$$, given no other systematic contaminants and an error tolerance as high as 10 per cent. More pessimistic models will be more restrictive. These results emphasize the need for highly effective RFI mitigation strategies for telescopes used to search for the EoR. 
    more » « less
  3. null (Ed.)
    ABSTRACT We present a new catalogue of Damped Lyman-α absorbers from SDSS DR16Q, as well as new estimates of their statistical properties. Our estimates are computed with the Gaussian process models presented in Garnett et al., Ho, Bird & Garnett with an improved model for marginalizing uncertainty in the mean optical depth of each quasar. We compute the column density distribution function (CDDF) at 2 < z < 5, the line density (dN/dX), and the neutral hydrogen density (ΩDLA). Our Gaussian process model provides a posterior probability distribution of the number of DLAs per spectrum, thus allowing unbiased probabilistic predictions of the statistics of DLA populations even with the noisiest data. We measure a non-zero column density distribution function for $$N_{\rm {HI}}\lt 3 \times 10^{22} \, \rm {cm}^{-2}$$ with $$95{{\ \rm per\ cent}}$$ confidence limits, and $$N_{\rm {HI}}\lesssim 10^{22} \, \rm {cm}^{-2}$$ for spectra with signal-to-noise ratios >4. Our results for DLA line density and total hydrogen density are consistent with previous measurements. Despite a small bias due to the poorly measured blue edges of the spectra, we demonstrate that our new model can measure the DLA population statistics when the DLA is in the Lyman-β forest region. We verify our results are not sensitive to the signal-to-noise ratios and redshifts of the background quasars although a residual correlation remains for detections from zQSO < 2.5, indicating some residual systematics when applying our models on very short spectra, where the SDSS spectral observing window only covers part of the Lyman-α forest. 
    more » « less
  4. We compute the RO(G)‐graded equivariant algebraic K‐groups of a finite field with an action by its Galois group G. Specifically, we show these K‐groups split as the sum of an explicitly computable term and the well‐studied RO(G)‐graded coefficient groups of the equivariant Eilenberg–MacLane spectrum HZ. Our comparison between the equivariant K‐theory spectrum and HZ further shows they share the same Tate spectra and geometric fixed point spectra. In the case where G has prime order, we provide an explicit presentation of the equivariant K‐groups. 
    more » « less
  5. ABSTRACT We present LyMAS2, an improved version of the ‘Lyman-α Mass Association Scheme’ aiming at predicting the large-scale 3D clustering statistics of the Lyman-α forest (Ly α) from moderate-resolution simulations of the dark matter (DM) distribution, with prior calibrations from high-resolution hydrodynamical simulations of smaller volumes. In this study, calibrations are derived from the Horizon-AGN suite simulations, (100 Mpc h)−3 comoving volume, using Wiener filtering, combining information from DM density and velocity fields (i.e. velocity dispersion, vorticity, line-of-sight 1D-divergence and 3D-divergence). All new predictions have been done at z = 2.5 in redshift space, while considering the spectral resolution of the SDSS-III BOSS Survey and different DM smoothing (0.3, 0.5, and 1.0 Mpc h−1 comoving). We have tried different combinations of DM fields and found that LyMAS2, applied to the Horizon-noAGN DM fields, significantly improves the predictions of the Ly α 3D clustering statistics, especially when the DM overdensity is associated with the velocity dispersion or the vorticity fields. Compared to the hydrodynamical simulation trends, the two-point correlation functions of pseudo-spectra generated with LyMAS2 can be recovered with relative differences of ∼5 per cent even for high angles, the flux 1D power spectrum (along the light of sight) with ∼2 per cent and the flux 1D probability distribution function exactly. Finally, we have produced several large mock BOSS spectra (1.0 and 1.5 Gpc h−1) expected to lead to much more reliable and accurate theoretical predictions. 
    more » « less