skip to main content


Search for: All records

Award ID contains: 2123496

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Advent of satellite altimetry brought into focus the pervasiveness of mesoscale eddies$${{{{{{{\bf{{{{{{{{\mathcal{O}}}}}}}}}}}}}}}}({100})$$O(100)km in size, which are the ocean’s analogue of weather systems and are often regarded as the spectral peak of kinetic energy (KE). Yet, understanding of the ocean’s spatial scales has been derived mostly from Fourier analysis in small representative” regions that cannot capture the vast dynamic range at planetary scales. Here, we use a coarse-graining method to analyze scales much larger than what had been possible before. Spectra spanning over three decades of length-scales reveal the Antarctic Circumpolar Current as the spectral peak of the global extra-tropical circulation, at ≈ 104km, and a previously unobserved power-law scaling over scales larger than 103km. A smaller spectral peak exists at ≈ 300 km associated with mesoscales, which, due to their wider spread in wavenumber space, account for more than 50% of resolved surface KE globally. Seasonal cycles of length-scales exhibit a characteristic lag-time of ≈ 40 days per octave of length-scales such that in both hemispheres, KE at 102km peaks in spring while KE at 103km peaks in late summer. These results provide a new window for understanding the multiscale oceanic circulation within Earth’s climate system, including the largest planetary scales.

     
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. The theory of the magnetothermal instability (MTI) [D. A. Tidman and R. A. Shanny, Phys. Fluids 17, 1207 (1974)] is revisited through the lens of the stability of uniform systems. The linear stability analysis includes flow advection and Nernst transport. The instability criteria derived distinguish between the convective and the absolute nature of the perturbation growth. It is proven that, in the region where the Nernst and plasma blowoff velocities cancel, the MTI can be absolute and wave-packet perturbations grow in situ. This instability is mediated by the internal feedback between the Biermann battery and Righi–Leduc terms. The analysis is extended to derive the dispersion relation for short-wavelength perturbations developing in nonuniform profiles with the application to coronal plasmas. It is found that the condition for MTI requires the net B-field convection velocity to be small at the isothermal sonic section, and the plasma conditions in this section govern the dynamics of the instability. Analysis of hydro-equivalent implosions suggests that unstable perturbations undergo more e-foldings of growth in larger-size targets.

     
    more » « less
  4. A laser-driven shock propagating through an isolated particle embedded in a plastic (CH) target was studied using the radiation-hydrodynamic code FLASH. Preliminary simulations using IONMIX equations of state (EOS) showed significant differences in the shock Hugoniot of aluminum compared to experimental data in the low-pressure regime [ O(10) GPa], resulting in higher streamwise compression and deformation of an aluminum particle. Hence, a simple modification to the ideal gas EOS was developed and employed to describe the target materials and examine the particle dynamics. The evolution of the pressure field demonstrated a complex wave interaction, resulting in a highly unsteady particle drag which featured two drag minima due to shock focusing at the rear end of the particle and rarefaction stretching due to laser shut-off. Although ∼30% lateral expansion and ∼25% streamwise compression were observed, the aluminum particle maintained considerable integrity without significant distortion. Additional simulations examined the particle response for a range of particle densities, sizes, and acoustic impedances. The results revealed that lighter particles such as aluminum gained significant momentum, reaching up to ∼96% of the shocked CH's speed, compared to ∼29% for the heavier tungsten particles. Despite the differences seen in the early stage of shock interaction, particles with varying acoustic impedances ultimately reached the same peak velocity. This identified particle-to-host density ratio is an important factor in determining the inviscid terminal velocity of the particle. In addition, the modified EOS model presented in this study could be used to approximate solid materials in hydrocodes that lack material strength models. 
    more » « less
  5. Inertial confinement fusion (ICF) holds increasing promise as a potential source of abundant, clean energy, but has been impeded by defects such as micro-voids in the ablator layer of the fuel capsules. It is critical to understand how these micro-voids interact with the laser-driven shock waves that compress the fuel pellet. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we utilized an x-ray pulse train with ns separation, an x-ray microscope, and an ultrafast x-ray imaging (UXI) detector to image shock wave interactions with micro-voids. To minimize the high- and low-frequency variations of the captured images, we incorporated principal component analysis (PCA) and image alignment for flat-field correction. After applying these techniques we generated phase and attenuation maps from a 2D hydrodynamic radiation code (xRAGE), which were used to simulate XPCI images that we qualitatively compare with experimental images, providing a one-to-one comparison for benchmarking material performance. Moreover, we implement a transport-of-intensity (TIE) based method to obtain the average projected mass density (areal density) of our experimental images, yielding insight into how defect-bearing ablator materials alter microstructural feature evolution, material compression, and shock wave propagation on ICF-relevant time scales. 
    more » « less