skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 12, 2026

Title: Intersectional Fairness in Reinforcement Learning with Large State and Constraint Spaces
In traditional reinforcement learning (RL), the learner aims to solve a single objective optimization problem: find the policy that maximizes expected reward. However, in many real-world settings, it is important to optimize over multiple objectives simultaneously. For example, when we are interested in fairness, states might have feature annotations corresponding to multiple (intersecting) demographic groups to whom reward accrues, and our goal might be to maximize the reward of the group receiving the minimal reward. In this work, we consider a multi-objective optimization problem in which each objective is defined by a state-based reweighting of a single scalar reward function. This generalizes the problem of maximizing the reward of the minimum reward group. We provide oracle-efficient algorithms to solve these multi-objective RL problems even when the number of objectives is exponentially large-for tabular MDPs, as well as for large MDPs when the group functions have additional structure. Finally, we experimentally validate our theoretical results and demonstrate applications on a preferential attachment graph MDP.  more » « less
Award ID(s):
2217062 2147212
PAR ID:
10596505
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ICML 2025
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Omega-regular properties—specified using linear time temporal logic or various forms of omega-automata—find increasing use in specifying the objectives of reinforcement learning (RL). The key problem that arises is that of faithful and effective translation of the objective into a scalar reward for model-free RL. A recent approach exploits Büchi automata with restricted nondeterminism to reduce the search for an optimal policy for an Open image in new window-regular property to that for a simple reachability objective. A possible drawback of this translation is that reachability rewards are sparse, being reaped only at the end of each episode. Another approach reduces the search for an optimal policy to an optimization problem with two interdependent discount parameters. While this approach provides denser rewards than the reduction to reachability, it is not easily mapped to off-the-shelf RL algorithms. We propose a reward scheme that reduces the search for an optimal policy to an optimization problem with a single discount parameter that produces dense rewards and is compatible with off-the-shelf RL algorithms. Finally, we report an experimental comparison of these and other reward schemes for model-free RL with omega-regular objectives. 
    more » « less
  2. Recent works extend classification group fairness measures to sequential decision processes such as reinforcement learning (RL) by measuring fairness as the difference in decisionmaker utility (e.g. accuracy) of each group. This approach suffers when decision-maker utility is not perfectly aligned with group utility, such as in repeat loan applications where a false positive (loan default) impacts the groups (applicants) and decision-maker (lender) by different magnitudes. Some works remedy this by measuring fairness in terms of group utility, typically referred to as their "qualification", but few works offer solutions that yield group qualification equality. Those that do are prone to violating the "no-harm" principle where one or more groups’ qualifications are lowered in order to achieve equality. In this work, we characterize this problem space as having three implicit objectives: maximizing decision-maker utility, maximizing group qualification, and minimizing the difference in qualification between groups. We provide a RL policy learning technique that optimizes for these objectives directly by constructing a multi-objective reward function that encodes these objectives as distinct reward signals. Under suitable parameterizations our approach is guaranteed to respect the "no-harm" principle. 
    more » « less
  3. Traffic signal controller (TSC) has a crucial role in managing traffic flow in urban areas. Recently, reinforcement learning (RL) models have received a great attention for TSC with promising results. However, these RL-TSC models still need to be improved for real-world deployment due to limited exploration of different performance metrics such as fair traffic scheduling or air quality impact. In this work, we introduce a constrained multi-objective RL model that minimizes multiple constrained objectives while achieving a higher expected reward. Furthermore, our proposed RL strategy integrates the peak and average constraint models to the RL problem formulation with maximum entropy off-policy models. We applied this strategy to a single TSC and a network of TSCs. As part of this constrained RL-TSC formulation, we discuss fairness and air quality parameters as constraints for the closed-loop control system optimization model at TSCs calledFAirLight. Our experimental analysis shows that the proposedFAirLightachieves a good traffic flow performance in terms of average waiting time while being fair and environmentally friendly. Our method outperforms the baseline models and allows a more comprehensive view of RL-TSC regarding its applicability to the real world. 
    more » « less
  4. Piotr Faliszewski; Viviana Mascardi (Ed.)
    Recent success in reinforcement learning (RL) has brought renewed attention to the design of reward functions by which agent behavior is reinforced or deterred. Manually designing reward functions is tedious and error-prone. An alternative approach is to specify a formal, unambiguous logic requirement, which is automatically translated into a reward function to be learned from. Omega-regular languages, of which Linear Temporal Logic (LTL) is a subset, are a natural choice for specifying such requirements due to their use in verification and synthesis. However, current techniques based on omega-regular languages learn in an episodic manner whereby the environment is periodically reset to an initial state during learning. In some settings, this assumption is challenging or impossible to satisfy. Instead, in the continuing setting the agent explores the environment without resets over a single lifetime. This is a more natural setting for reasoning about omega-regular specifications defined over infinite traces of agent behavior. Optimizing the average reward instead of the usual discounted reward is more natural in this case due to the infinite-horizon objective that poses challenges to the convergence of discounted RL solutions. We restrict our attention to the omega-regular languages which correspond to absolute liveness specifications. These specifications cannot be invalidated by any finite prefix of agent behavior, in accordance with the spirit of a continuing problem. We propose a translation from absolute liveness omega-regular languages to an average reward objective for RL. Our reduction can be done on-the-fly, without full knowledge of the environment, thereby enabling the use of model-free RL algorithms. Additionally, we propose a reward structure that enables RL without episodic resetting in communicating MDPs, unlike previous approaches. We demonstrate empirically with various benchmarks that our proposed method of using average reward RL for continuing tasks defined by omega-regular specifications is more effective than competing approaches that leverage discounted RL. 
    more » « less
  5. The expanding role of reinforcement learning (RL) in safety-critical system design has promoted ω-automata as a way to express learning requirements—often non-Markovian—with greater ease of expression and interpretation than scalar reward signals. However, real-world sequential decision making situations often involve multiple, potentially conflicting, objectives. Two dominant approaches to express relative preferences over multiple objectives are: (1)weighted preference, where the decision maker provides scalar weights for various objectives, and (2)lexicographic preference, where the decision maker provides an order over the objectives such that any amount of satisfaction of a higher-ordered objective is preferable to any amount of a lower-ordered one. In this article, we study and develop RL algorithms to compute optimal strategies in Markov decision processes against multiple ω-regular objectives under weighted and lexicographic preferences. We provide a translation from multiple ω-regular objectives to a scalar reward signal that is bothfaithful(maximising reward means maximising probability of achieving the objectives under the corresponding preference) andeffective(RL quickly converges to optimal strategies). We have implemented the translations in a formal reinforcement learning tool,Mungojerrie, and we present an experimental evaluation of our technique on benchmark learning problems. 
    more » « less