Abstract Molecular simulations are an important tool for research in physics, chemistry, and biology. The capabilities of simulations can be greatly expanded by providing access to advanced sampling methods and techniques that permit calculation of the relevant underlying free energy landscapes. In this sense, software that can be seamlessly adapted to a broad range of complex systems is essential. Building on past efforts to provide open-source community-supported software for advanced sampling, we introduce PySAGES, a Python implementation of the Software Suite for Advanced General Ensemble Simulations (SSAGES) that provides full GPU support for massively parallel applications of enhanced sampling methods such as adaptive biasing forces, harmonic bias, or forward flux sampling in the context of molecular dynamics simulations. By providing an intuitive interface that facilitates the management of a system’s configuration, the inclusion of new collective variables, and the implementation of sophisticated free energy-based sampling methods, the PySAGES library serves as a general platform for the development and implementation of emerging simulation techniques. The capabilities, core features, and computational performance of this tool are demonstrated with clear and concise examples pertaining to different classes of molecular systems. We anticipate that PySAGES will provide the scientific community with a robust and easily accessible platform to accelerate simulations, improve sampling, and enable facile estimation of free energies for a wide range of materials and processes.
more »
« less
Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science
The field of computational molecular sciences (CMSs) has made innumerable contributions to the understanding of the molecular phenomena that underlie and control chemical processes, which is manifested in a large number of community software projects and codes. The CMS community is now poised to take the next transformative steps of better training in modern software design and engineering methods and tools, increasing interoperability through more systematic adoption of agreed upon standards and accepted best-practices, overcoming unnecessary redundancy in software effort along with greater reproducibility, and increasing the deployment of new software onto hardware platforms from in-house clusters to mid-range computing systems through to modern supercomputers. This in turn will have future impact on the software that will be created to address grand challenge science that we illustrate here: the formulation of diverse catalysts, descriptions of long-range charge and excitation transfer, and development of structural ensembles for intrinsically disordered proteins.
more »
« less
- Award ID(s):
- 2154482
- PAR ID:
- 10596572
- Publisher / Repository:
- J. Chem. Phys
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 149
- Issue:
- 18
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract ChemMLis an open machine learning (ML) and informatics program suite that is designed to support and advance the data‐driven research paradigm that is currently emerging in the chemical and materials domain.ChemMLallows its users to perform various data science tasks and execute ML workflows that are adapted specifically for the chemical and materials context. Key features are automation, general‐purpose utility, versatility, and user‐friendliness in order to make the application of modern data science a viable and widely accessible proposition in the broader chemistry and materials community.ChemMLis also designed to facilitate methodological innovation, and it is one of the cornerstones of the software ecosystem for data‐driven in silico research. This article is categorized under:Software > Simulation MethodsComputer and Information Science > ChemoinformaticsStructure and Mechanism > Computational Materials ScienceSoftware > Molecular Modelingmore » « less
-
null (Ed.)Software is a critical part of modern research and yet there is little support across the scholarly ecosystem for its acknowledgement and citation. Inspired by the activities of the FORCE11 working group focused on data citation, this document summarizes the recommendations of the FORCE11 Software Citation Working Group and its activities between June 2015 and April 2016. Based on a review of existing community practices, the goal of the working group was to produce a consolidated set of citation principles that may encourage broad adoption of a consistent policy for software citation across disciplines and venues. Our work is presented here as a set of software citation principles, a discussion of the motivations for developing the principles, reviews of existing community practice, and a discussion of the requirements these principles would place upon different stakeholders. Working examples and possible technical solutions for how these principles can be implemented will be discussed in a separate paper.more » « less
-
Proteins and nucleic acids participate in essentially every biochemical process in living organisms, and the elucidation of their structure and motions is essential for our understanding how these molecular machines perform their function. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful versatile technique that provides critical information on the molecular structure and dynamics. Spin-relaxation data are used to determine the overall rotational diffusion and local motions of biological macromolecules, while residual dipolar couplings (RDCs) reveal local and long-range structural architecture of these molecules and their complexes. This information allows researchers to refine structures of proteins and nucleic acids and provides restraints for molecular docking. Several software packages have been developed by NMR researchers in order to tackle the complicated experimental data analysis and structure modeling. However, many of them are offline packages or command-line applications that require users to set up the run time environment and also to possess certain programming skills, which inevitably limits accessibility of this software to a broad scientific community. Here we present new science gateways designed for NMR/structural biology community that address these current limitations in NMR data analysis. Using the GenApp technology for scientific gateways (https://genapp.rocks), we successfully transformed ROTDIF and ALTENS, two offline packages for bio-NMR data analysis, into science gateways that provide advanced computational functionalities, cloud-based data management, and interactive 2D and 3D plotting and visualizations. Furthermore, these gateways are integrated with molecular structure visualization tools (Jmol) and with gateways/engines (SASSIE-web) capable of generating huge computer-simulated structural ensembles of proteins and nucleic acids. This enables researchers to seamlessly incorporate conformational ensembles into the analysis in order to adequately take into account structural heterogeneity and dynamic nature of biological macromolecules. ROTDIF-web offers a versatile set of integrated modules/tools for determining and predicting molecular rotational diffusion tensors and model-free characterization of bond dynamics in biomacromolecules and for docking of molecular complexes driven by the information extracted from NMR relaxation data. ALTENS allows characterization of the molecular alignment under anisotropic conditions, which enables researchers to obtain accurate local and long-range bond-vector restraints for refining 3-D structures of macromolecules and their complexes. We will describe our experience bringing our programs into GenApp and illustrate the use of these gateways for specific examples of protein systems of high biological significance. We expect these gateways to be useful to structural biologists and biophysicists as well as NMR community and to stimulate other researchers to share their scientific software in a similar way.more » « less
-
null (Ed.)Our Accessibility Learning Labs not only inform participants about how to properly create accessible software, but also demonstrate the need to create accessible software. These experiential browser-based activities enable students, instructors and practitioners to utilize the material using only their browser. This tutorial will benefit a wide-range of participants in the software engineering community, from students to experienced practitioners who want to ensure that they are properly creating inclusive, accessible software. Complete project material is publicly available on the project website: http://all.rit.edumore » « less
An official website of the United States government

