skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 10, 2026

Title: VL-TGS: Trajectory Generation and Selection Using Vision Language Models in Mapless Outdoor Environments
We present a multi-modal trajectory generation and selection algorithm for real-world mapless outdoor navigation in human-centered environments. Such environments contain rich features like crosswalks, grass, and curbs, which are easily interpretable by humans, but not by mobile robots. We aim to compute suitable trajectories that (1) satisfy the environment-specific traversability constraints and (2) generate human-like paths while navigating on crosswalks, sidewalks, etc. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model enhanced with traversability constraints to generate multiple candidate trajectories for global navigation. We develop a visual prompting approach and leverage the Visual Language Model's (VLM) zero-shot ability of semantic understanding and logical reasoning to choose the best trajectory given the contextual information about the task. We evaluate our method in various outdoor scenes with wheeled robots and compare the performance with other global navigation algorithms. In practice, we observe an average improvement of 20.81% in satisfying traversability constraints and 28.51% in terms of human-like navigation in four different outdoor navigation scenarios.  more » « less
Award ID(s):
2350352
PAR ID:
10596636
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
10
Issue:
6
ISSN:
2377-3774
Page Range / eLocation ID:
5791 to 5798
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a novel end-to-end diffusion-based trajectory generation method, DTG, for mapless global navigation in challenging outdoor scenarios with occlusions and unstructured off-road features like grass, buildings, bushes, etc. Given a distant goal, our approach computes a trajectory that satisfies the following goals: (1) minimize the travel distance to the goal; (2) maximize the traversability by choosing paths that do not lie in undesirable areas. Specifically, we present a novel Conditional RNN(CRNN) for diffusion models to efficiently generate trajectories. Furthermore, we propose an adaptive training method that ensures that the diffusion model generates more traversable trajectories. We evaluate our methods in various outdoor scenes and compare the performance with other global navigation algorithms on a Husky robot. In practice, we observe at least a 15% improvement in traveling distance and around a 7% improvement in traversability. Video and Code: https://github.com/jingGM/DTG.git. 
    more » « less
  2. We present a novel learning-based trajectory generation algorithm for outdoor robot navigation. Our goal is to compute collision-free paths that also satisfy the environment-specific traversability constraints. Our approach is designed for global planning using limited onboard robot perception in mapless environments while ensuring comprehensive coverage of all traversable directions. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model that is enhanced with traversability constraints and an optimization formulation used for the coverage. We highlight the benefits of our approach over state-of-the-art trajectory generation approaches and demonstrate its performance in challenging and large outdoor environments, including around buildings, across intersections, along trails, and off-road terrain, using a Clearpath Husky and a Boston Dynamics Spot robot. In practice, our approach results in a 6% improvement in coverage of traversable areas and an 89% reduction in trajectory portions residing in non-traversable regions. Our video is here: https://youtu.be/3eJ2soAzXnU 
    more » « less
  3. Rectilinear forms of snake-like robotic locomotion are anticipated to be an advantage in obstacle-strewn scenarios characterizing urban disaster zones, subterranean collapses, and other natural environments. The elongated, laterally narrow footprint associated with these motion strategies is well suited to traversal of confined spaces and narrow pathways. Navigation and path planning in the absence of global sensing, however, remains a pivotal challenge to be addressed prior to practical deployment of these robotic mechanisms. Several challenges related to visual processing and localization need to be resolved to to enable navigation. As a first pass in this direction, we equip a wireless, monocular color camera to the head of a robotic snake. Visiual odometry and mapping from ORB-SLAM permits self-localization in planar, obstacle strewn environments. Ground plane traversability segmentation in conjunction with perception-space collision detection permits path planning for navigation. A previously presented dynamical reduction of rectilinear snake locomotion to a non-holonomic kinematic vehicle informs both SLAM and planning. The simplified motion model is then applied to track planned trajectories through an obstacle configuration. This navigational framework enables a snake-like robotic platform to autonomously navigate and traverse unknown scenarios with only monocular vision. 
    more » « less
  4. Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called B ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments. 
    more » « less
  5. arXiv (Ed.)
    This study addresses the challenge of integrating social norms into robot navigation, which is essential for ensuring that robots operate safely and efficiently in human-centric environments. Social norms, often unspoken and implicitly understood among people, are difficult to explicitly define and implement in robotic systems. To overcome this, we derive these norms from real human trajectory data, utilizing the comprehensive ATC dataset to identify the minimum social zones humans and robots must respect. These zones are integrated into the robot’s navigation system by applying barrier functions, ensuring the robot consistently remains within the designated safety set. Simulation results demonstrate that our system effectively mimics human-like navigation strategies, such as passing on the right side and adjusting speed or pausing in constrained spaces. The proposed framework is versatile, easily comprehensible, and tunable, demonstrating the potential to advance the development of robots designed to navigate effectively in human-centric environments. 
    more » « less