skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is the Chemisorbed CO 2 in Ionic Liquid Electrolytes Active for Electrochemical Utilization? A Case Study on Carboxylate and Carbamate Speciation
Abstract This study examines the activity of chemisorbed CO2 species in the microenvironment formed by bifunctional ionic liquids (ILs) in the reactive capture and conversion (RCC) of CO2 to CO on silver. Comparative electroanalytical measurements with imidazolium based ILs were performed to probe the impact of electrostatic interactions, anion and cation basicity, and hydrogen bonding on RCC. Particularly, ILs with 1-ethyl,3-methylimidazolium ([EMIM]+) and 1-ethyl, 2,3-methylimidazolium ([EMMIM]+) cations and aprotic heterocyclic anions of 2-cyanopyrrolide ([2-CNpyr]) and 1,2,4-triazolide ([1,2,4-Triz]) were examined for RCC. It was found that anion–CO2 carbamate complexes facilitate RCC at significantly lower overpotentials compared to cation–CO2 carboxylate complexes. Additionally, [EMIM]+ was found to better stabilize anion–CO2 complexes than [EMMIM]+. Furthermore, it was found that 2-CNpyrH that naturally forms in CO2 absorption competes for electrode surface adsorption with the anion–CO2 carbamate complex, thereby reducing the electrochemical activity of the anion–CO2 complex. These results highlight the importance of IL structure in tuning the interfacial interactions and suggest that ILs with anion-dominated CO2 chemisorption enhances CO2 utilization in RCC applications.  more » « less
Award ID(s):
2045111
PAR ID:
10596732
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
ISSN:
0013-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ionic liquids (ILs) are gaining attention as protein stabilizers and refolding additives. However, varying degrees of success with this approach motivates the need to better understand fundamental IL-protein interactions. A combination of experiment and simulation is used to investigate the thermal unfolding of lysozyme in the presence of two imidazolium-based ILs (1-ethyl-3-methylimidazolium ethylsulfate, [EMIM][EtSO 4 ] and 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][Et 2 PO 4 ]). Both ILs reduce lysozyme melting temperature Tm , but more gradually than strong denaturants. [EMIM][Et 2 PO 4 ] lowers lysozyme Tm more readily than [EMIM][EtSO 4 ], as well as requiring less energy to unfold the protein, as determined by the calorimetric enthalpy ΔH. Intrinsic fluorescence measurements indicate that both ILs bind to tryptophan residues in a dynamic mode, and furthermore, molecular dynamics simulations show a high density of [EMIM] + near lysozyme’s Trp62 residue. For both ILs approximately half of the [EMIM] + cations near Trp62 show perfect alignment of their respective rings. The [EMIM] + cations, having a "local" effect in binding to tryptophan,likely perturb a critically important Arg-Trp-Arg bridge through favorable π − π and cation-π interactions. Simulations show that the anions, [EtSO 4 ] - and [Et 2 PO 4 ] - , interact in a "global" manner with lysozyme, due to this protein’s strong net positive charge. The anions also determine the local distribution of ions surrounding the protein. [Et 2 PO 4 ] - is found to have a closer first coordination shell around the protein and stronger Coulomb interactions with lysozyme than [EtSO 4 ] - , which could explain why the former anion is more destabilizing. Patching of ILs to the protein surface is also observed, suggesting there is no universal IL solvent for proteins, and highlighting the complexity of the IL-protein environment. 
    more » « less
  2. The phenomenon of ionic liquid (IL) nanoconfinement within a copolymer/IL membrane reportedly enhances membrane selectivity, solubility, and transport in gas separations. Also, the copolymer/IL membrane morphology has been found to affect IL stability at high transmembrane pressures. In this work, a combined mesoscopic dynamics simulation and hybrid grand canonical Monte Carlo/molecular dynamics (GCMC-MD) simulations were carried out to investigate the morphologies, as well as CO2/CH4 gas diffusivities, solubilities, and selectivities of polystyrene-b-poly(ethylene oxide) (PS-b-PEO)/1-Ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) and PS-b-PEO/1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]) membranes. The latter simulations focused on nanoconfined ILs in the copolymer/IL phase boundaries at 2.5 and 5 nm confinement lengths. The investigated systems were four nanoconfined ILs, i.e., PS/[EMIM][SCN]/PEO (the IL forming a separate microphase, denoted IL-Micro), PS/[EMIM][Tf2N]/PEO, PS/[EMIM][SCN]-PEO/PS (the IL distributed in the PEO phase, denoted IL-PEO), and PS/[EMIM][Tf2N]-PEO/PS, and five control systems, i.e., PS/PEO/PS, bulk PS, bulk PEO, bulk [EMIM][SCN], and bulk [EMIM][Tf2N]. Based on the mesoscopic dynamics simulation results, the dominant membrane morphologies at IL loadings of <50 vol % were lamellar or cylindrical (favorable for both IL stability at high transmembrane pressures if the bedding planes are horizontal, i.e. at 90° to the nominal direction of the transmembrane pressure gradient) with the IL-PEO or IL-Micro phases. Also, there was an overall 50% match between the observed PS-b-PEO/[EMIM][SCN] and PS-b-PEO/[EMIM][Tf2N] membrane morphologies. Based on the MD simulation results, both CO2 and CH4 diffusivities were the smallest in the bulk PS (control) and highest in the PS/[EMIM][Tf2N]/PEO system (IL-Micro between the PS and PEO phases) at both confinement lengths. The CO2 diffusivities were, on average, larger when the confinement length increased to 5 nm. The GCMC-MD results indicated that the CO2 solubility in the IL-Micro phases was higher than in the corresponding bulk ILs at both confinement lengths, with the PS/[EMIM][Tf2N]/PEO system exhibiting the highest CO2 solubility, followed by the PS/[EMIM][SCN]/PEO system. Additionally, the permselectivities of the nanoconfined IL systems were, on average, 40–50% larger than those of the bulk systems, with the highest permselectivity observed for PS/[EMIM][Tf2N]/PEO at the confinement length of 5 nm. Overall, the IL nanoconfinement between the PS and PEO phases (IL-Micro) leads to significant improvements in the CO2/CH4 permselectivities, suggesting that strategies to create nanoconfined IL morphologies in the copolymer/IL membranes are very promising for optimizing the membrane gas separation performance. 
    more » « less
  3. null (Ed.)
    Ionic liquids (ILs) exhibit unique properties that have led to their development and widespread use for a variety of applications. Development efforts have generally focused on achieving desired macroscopic properties via tuning of the IL through variation of the cations and anions. Both the macroscopic and microscopic properties of an IL influence its tunability and thus feasibility of use for selected applications. Works geared toward a microscopic understanding of the nature and strength of the intrinsic cation-anion interactions of ILs have been limited to date. Specifically, the intrinsic strength of the cation-anion interactions in ILs is largely unknown. In previous work, we employed threshold collision-induced dissociation (TCID) approaches supported and enhanced by electronic structure calculations to determine the bond dissociation energies (BDEs) and characterize the nature of the cation-anion interactions in a series of four 2:1 clusters of 1-alkyl-3-methylimidazolium cations with the hexafluorophosphate anion, [2C n mim:PF 6 ] + . To examine the effects of the 1-alkyl chain on the structure and energetics of binding, the cation was varied over the series: 1-ethyl-3-methylimidazolium, [C 2 mim] + , 1-butyl-3-methylimidazolium, [C 4 mim] + , 1-hexyl-3-methylimidazolium, [C 6 mim] + , and 1-octyl-3-methylimidazolium, [C 8 mim] + . The variation in the strength of binding among these [2C n mim:PF 6 ] + clusters was found to be similar in magnitude to the average experimental uncertainty in the measurements. To definitively establish an absolute order of binding among these [2C n mim:PF 6 ] + clusters, we extend this work again using TCID and electronic structure theory approaches to include competitive binding studies of three mixed 2:1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [C n-2 mim:PF 6 :C n mim] + for n = 4, 6, and 8. The absolute BDEs of these mixed [C n-2 mim:PF 6 :C n mim] + clusters as well as the absolute difference in the strength of the intrinsic binding interactions as a function of the cation are determined with significantly improved precision. By combining the thermochemical results of the previous independent and present competitive measurements, the BDEs of the [2C n mim:PF 6 ] + clusters are both more accurately and more precisely determined. Comparisons are made to results for the analogous [2C n mim:BF 4 ] + and [C n-2 mim:PF 6 :C n mim] + clusters previously examined to elucidate the effects of the [PF 6 ] - and [BF 4 ] - anions on the binding. 
    more » « less
  4. The roles of the ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and water in controlling the mechanism, energetics, and electrocatalytic activity of CO2 reduction to CO on silver in nonaqueous electrolytes were investigated. The first electron transfer occurs to CO2 at reduced overpotentials when it is trapped between the planes of the [EMIM]+ ring and the electrode surface due to cation reorientation as determined from voltammetry, in situ surface-enhanced Raman spectroscopy, and density functional theory calculations. Within this interface, water up to 0.5 M does not induce significant Faradaic activity, opposing the notion of it being a free proton source. Instead, water acts as a hydrogen bond donor, and the proton is sourced from [EMIM]+. Furthermore, this study demonstrates that alcohols with varying acidities tune the hydrogen bonding network in the interfacial microenvironment to lower the energetics required for CO2 reduction. The hydrogen bonding suppresses the formation of inactive carboxylate species, thus preserving the catalytic activity of [EMIM]+. The ability to tune the hydrogen bonding network opens new avenues for advancing IL-mediated electrocatalytic reactions in nonaqueous electrolytes. 
    more » « less
  5. Integrating transducer/sensing materials into microfluidic platforms has enhanced gas sensors′ sensitivity, selectivity, and response time while facilitating miniaturization. In this manuscript, microfluidics has been integrated with non-planar microelectrode array and functionalized ionic liquids (ILs) to develop a novel miniaturized electrochemical gas sensor architecture. The sensor employs the IL 1-ethyl-3-methylimidazolium 2-cyanopyrolide ([EMIM][2-CNpyr]) as the electrolyte and capture molecule for detecting carbon dioxide (CO 2 ). The three-layer architecture of the sensor consists of a microchannel with the IL sandwiched between glass slides containing microelectrode arrays, forming a non-planar structure. This design facilitates electric field penetration through the IL, capturing CO 2 binding perturbations throughout the channel volume to enhance sensitivity. CO 2 binding with [EMIM][2-CNpyr] generates carboxylate ([EMIM] + -CO2 − ]), carbamate ([2-CNpyr]-CO2 − ]), and pyrrole-2-carbonitrile (2-CNpyrH) species, significantly decreasing the conductivity. The viscosity is also increased, leading to a further decrease in conductivity. These cumulative effects increase charge transfer resistance in the impedance spectrum, allowing a linear calibration curve obtained using Langmuir Isotherm. The sensitivity and reproducibility in CO 2 detection are demonstrated by two electrode configurations using the calibration curve. The developed sensor offers a versatile platform for future applications. 
    more » « less