The acoustic standing wave near the end of an open pipe is investigated using spectrally analyzed high-speed transmission electronic speckle pattern interferometry. It is shown that the standing wave extends beyond the open end of the pipe and the amplitude decays exponentially with distance from the end. Additionally, a pressure node is observed near the end of the pipe in a position that is not spatially periodic with the other nodes in the standing wave. A sinusoidal fit to the amplitude of the standing wave inside the pipe indicates that the end correction is well predicted by current theory.
more »
« less
This content will become publicly available on February 1, 2026
Understanding end corrections and flow near the open end of a flue instrument
Wind instruments containing a resonator (i.e., pipe) with an open end are expected to exhibit an acoustic standing wave characterized by a density oscillation whose amplitude falls to zero a short distance beyond the end of the resonator. An extrapolation of this amplitude based on the behavior inside the resonator yields an “effective” node of the standing wave (i.e., a point at which the extrapolated amplitude vanishes), and the distance from the end of the resonator to the location of this effective node (which is commonly referred to as simply a “node”) is known as the “end correction.” Recent work using a novel optical technique involving optical speckle patterns surprisingly suggested instead that a node is located inside the resonator with unexpected structure in the standing wave amplitude just beyond the end of the resonator. We have studied this problem by numerically solving the Navier-Stokes equations and find that the effective node of the density oscillation is located at the expected position outside the resonator with no unexpected structure in the functional form of the standing wave. We also show how pressure gradients and the flow pattern found near the end of the resonator can account for the unexpected behavior observed in the experiments. This sensitivity of optical interference effects to flow structure may give a new experimental way to investigate vorticity and other complex flows found in the mouthpiece of a musical instrument and in other situations.
more »
« less
- Award ID(s):
- 2306035
- PAR ID:
- 10596824
- Publisher / Repository:
- Acoustical Society of America
- Date Published:
- Journal Name:
- The Journal of the Acoustical Society of America
- Volume:
- 157
- Issue:
- 2
- ISSN:
- 0001-4966
- Page Range / eLocation ID:
- 1176 to 1184
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Correctly predicting the playing frequencies of a musical instrument is dependent on the length of the resonator with the addition of an end correction. There are multiple theories describing this end correction, perhaps the simplest being that the end correction of a pipe is a physical extension of the sinusoidal pressure standing wave inside the pipe. However, recent optical imaging of the flow in a flue organ pipe found an unexpected exponential decay of pressure just outside of the pipe. This work looks to validate those findings acoustically. A flue organ pipe was played at the 1st, 5th, and 7th harmonics and the pressure just inside and immediately outside the end of the pipe played was measured using a zero-degree PU Match Microflown sound intensity probe. These measurements were fit to both exponential and sinusoidal curves and compared to the optical images. While an exponential trend is in fact apparent in some cases, the goodness-of-fit appears to be dependent on which harmonic is sounding. Future work includes exploration of a potential transitional region, assessing the impact of altered pipe geometry (both cross-sectional shape and size), and investigating potential sensor interference by using other measurement equipment.more » « less
-
This study evaluates end-correction behavior in flue organ pipes by comparing two models: the classical low-frequency expression of Levine and Schwinger and the empirical, frequency-dependent refinement of Davies et al. [Journal of Sound Vibration 72 (1980) 543–546], later revisited by Moore et al. [JASA Express Letters 3 (2023) 055002]. Using a Microflown probe, we performed high-resolution pressure measurements inside and outside circular and square pipes to capture the transition from standing-wave to radiating behavior. Sinusoidal variation within the end-correction region and 1/rdecay beyond were observed, consistent with theory. A two-region curve-fitting approach quantified each model’s accuracy. In the tested range (0.049 ≤ ka ≤ 0.377), both models reproduced the data with nearly identical accuracy (R2 ≥ 0.997), with only a slight advantage for the classical form in one square-pipe case. Probe interference was evaluated and found negligible. While the analysis employs fixed end-correction values rather than a universal fit, it provides a controlled test of how well existing models capture the spatial pressure field near the pipe termination. Results indicate that both models are adequate in this regime, and that the radiating field beyondδfollows a robust 1/rdecay independent of model choice.more » « less
-
Abstract Optical resonators are structures that utilize wave interference and feedback to confine light in all three dimensions. Depending on the feedback mechanism, resonators can support either standing- or traveling-wave modes. Over the years, the distinction between these two different types of modes has become so prevalent that nowadays it is one of the main characteristics for classifying optical resonators. Here, we show that an intermediate link between these two rather different groups exists. In particular, we introduce a new class of photonic resonators that supports a hybrid optical mode, i.e. at one location along the resonator the electromagnetic fields associated with the mode feature a purely standing-wave pattern, while at a different location, the fields of the same mode represent a pure traveling wave. The proposed concept is general and can be implemented using chip-scale photonics as well as free-space optics. Moreover, it can be extended to other wave phenomena such as microwaves and acoustics.more » « less
-
Large-eddy simulations (LESs) of low-Reynolds-number flow (Re=50,000) over a NACA0018 airfoil are performed to investigate flow control at the stall angle of attack (15 deg) by low-amplitude surface waves (actuations) of different types (backward/forward traveling and standing waves) on the airfoil’s suction side. It is found that the backward (toward downstream) traveling waves, inspired from aquatic swimmers, are more effective than forward traveling and standing wave actuations. The results of simulations show that a backward traveling wave with a reduced frequency f∗=4 (f∗=fL/U, where f is frequency; L, chord length; and U, free flow velocity), a nondimensional wavelength λ∗=0.2 (λ∗=λ/L, where λ is dimensional wavelength), and a nondimensional amplitude a∗=0.002 (a∗=a/L, where a is dimensional amplitude) can suppress stall. In contrast, the flow over the airfoil with either standing or forward traveling wave actuations separates from the leading edge similar to the baseline. Consequently, the backward traveling wave creates the highest lift-to-drag ratio. For traveling waves at a higher amplitude (a∗=0.008), however, the shear layer becomes unstable from the actuation point and creates periodic coherent structures. Therefore, the lift coefficient decreases compared with the low-amplitude case.more » « less
An official website of the United States government
