skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 25, 2026

Title: Identifying the active microbes driving organosulfur cycling from taurine and methionine in marine sediment
Studies on microbial sulfur cycling in marine sediment have primarily centered on the cycling of inorganic sulfur. The microbial diversity underlying the cycling of organosulfur compounds is largely unexplored. In this study, we present the first quantification of dissolved organic sulfur (DOS) microbial assimilation in marine surface sediments using 13C-DOS quantitative DNA stable isotope probing (qSIP). We sampled marine sediment from 493 m water depth on the Puerto Rico continental slope, measured 13C-assimilation from two DOS substrates (13C-taurine and 13C-methionine), and compared the 13C-DOS assimilation to 13C-glucose uptake. Taurine utilization was confined to bacteria, whereas methionine was degraded by bacteria and archaea, including methanogenic Methanococcoides. Globally widespread uncultivated clades of Gammaproteobacteria and Deltaproteobacteria were the main drivers of DOS cycling and exhibited increased assimilation of carbon from taurine and methionine, compared to glucose. Only one operational taxonomic unit (OTU) affiliated with Neptuniibacter was found to assimilate taurine and methionine, but not glucose, implying that microbes exclusively utilizing both DOS substrates as a carbon source in marine sediments are rare. Still, a substantial number of bacterial taxa exhibited a higher assimilation of 13C from taurine or methionine, compared to glucose, indicating their preference for both DOS substrates over glucose as a carbon source in the sediment. These results represent the first quantitative assessment of organosulfur cycling from taurine and methionine by uncultivated microbes in a marine benthic environment.  more » « less
Award ID(s):
2049515
PAR ID:
10596846
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
ISME communications
ISSN:
2730-6151
Subject(s) / Keyword(s):
marine sediment carbon cycle dissolved organic sulfur taurine methionine qSIP Gammaproteobacteria Deltaproteobacteria Neptuniibacter Methanococcoides
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Glass, Jennifer B. (Ed.)
    ABSTRACT Sulfur-cycling microbial communities in salt marsh rhizosphere sediments mediate a recycling and detoxification system central to plant productivity. Despite the importance of sulfur-cycling microbes, their biogeographic, phylogenetic, and functional diversity remain poorly understood. Here, we use metagenomic data sets from Massachusetts (MA) and Alabama (AL) salt marshes to examine the distribution and genomic diversity of sulfur-cycling plant-associated microbes. Samples were collected from sediments underSporobolus alterniflorusandSporobolus pumilusin separate MA vegetation zones, and underS. alterniflorusandJuncus roemerianusco-occuring in AL. We grouped metagenomic data by plant species and site and identified 38 MAGs that included pathways for sulfate reduction or sulfur oxidation. Phylogenetic analyses indicated that 29 of the 38 were affiliated with uncultivated lineages. We showed differentiation in the distribution of MAGs between AL and MA, betweenS. alterniflorusandS. pumilusvegetation zones in MA, but no differentiation betweenS. alterniflorusandJ. roemerianusin AL. Pangenomic analyses of eight ubiquitous MAGs also detected site- and vegetation-specific genomic features, including varied sulfur-cycling operons, carbon fixation pathways, fixed single-nucleotide variants, and active diversity-generating retroelements. This genetic diversity, detected at multiple scales, suggests evolutionary relationships affected by distance and local environment, and demonstrates differential microbial capacities for sulfur and carbon cycling in salt marsh sediments. IMPORTANCESalt marshes are known for their significant carbon storage capacity, and sulfur cycling is closely linked with the ecosystem-scale carbon cycling in these ecosystems. Sulfate reducers are key for the decomposition of organic matter, and sulfur oxidizers remove toxic sulfide, supporting the productivity of marsh plants. To date, the complexity of coastal environments, heterogeneity of the rhizosphere, high microbial diversity, and uncultured majority hindered our understanding of the genomic diversity of sulfur-cycling microbes in salt marshes. Here, we use comparative genomics to overcome these challenges and provide an in-depth characterization of sulfur-cycling microbial diversity in salt marshes. We characterize communities across distinct sites and plant species and uncover extensive genomic diversity at the taxon level and specific genomic features present in MAGs affiliated with uncultivated sulfur-cycling lineages. Our work provides insights into the partnerships in salt marshes and a roadmap for multiscale analyses of diversity in complex biological systems. 
    more » « less
  2. Abstract Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean carbon cycle. 
    more » « less
  3. Francois Morel (Ed.)
    Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically “sulfurized” organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to –10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOM_SPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOM_SPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOM_SPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOS_SPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry. 
    more » « less
  4. Abstract Metabolite exchange within marine microbial communities transfers carbon and other major elements through global cycles and forms the basis of microbial interactions. Yet lack of gene annotations and concern about the quality of existing ones remain major impediments to revealing currencies of carbon flux. We employed an arrayed mutant library of the marine bacterium Ruegeria pomeroyi DSS-3 to experimentally annotate substrates of organic compound transporter systems, using mutant growth and compound drawdown analyses to link transporters to their cognate substrates. Mutant experiments verified substrates for thirteen R. pomeroyi transporters. Four were previously hypothesized based on gene expression data (taurine, glucose/xylose, isethionate, and cadaverine/putrescine/spermidine); five were previously hypothesized based on homology to experimentally annotated transporters in other bacteria (citrate, glycerol, N-acetylglucosamine, fumarate/malate/succinate, and dimethylsulfoniopropionate); and four had no previous annotations (thymidine, carnitine, cysteate, and 3-hydroxybutyrate). These bring the total number of experimentally-verified organic carbon influx transporters to 18 of 126 in the R. pomeroyi genome. In a longitudinal study of a coastal phytoplankton bloom, expression patterns of the experimentally annotated transporters linked them to different stages of the bloom, and also led to the hypothesis that citrate and 3-hydroxybutyrate were among the most highly available bacterial substrates. Improved functional annotation of the gatekeepers of organic carbon uptake is critical for deciphering carbon flux and fate in microbial ecosystems. 
    more » « less
  5. Abstract Cable bacteria are long, filamentous, multicellular bacteria that grow in marine sediments and couple sulfide oxidation to oxygen reduction over centimetre‐scale distances via long‐distance electron transport. Cable bacteria can strongly modify biogeochemical cycling and may affect microbial community networks. Here we examine interspecific interactions with marine cable bacteria (Ca. Electrothrix) by monitoring the succession of 16S rRNA amplicons (DNA and RNA) and cell abundance across depth and time, contrasting sediments with and without cable bacteria growth. In the oxic zone, cable bacteria activity was positively associated with abundant predatory bacteria (Bdellovibrionota, Myxococcota, Bradymonadales), indicating putative predation on cathodic cells. At suboxic depths, cable bacteria activity was positively associated with sulfate‐reducing and magnetotactic bacteria, consistent with cable bacteria functioning as ecosystem engineers that modify their local biogeochemical environment, benefitting certain microbes. Cable bacteria activity was negatively associated with chemoautotrophic sulfur‐oxidizing Gammaproteobacteria (Thiogranum,Sedimenticola) at oxic depths, suggesting competition, and positively correlated with these taxa at suboxic depths, suggesting syntrophy and/or facilitation. These observations are consistent with chemoautotrophic sulfur oxidizers benefitting from an oxidizing potential imparted by cable bacteria at suboxic depths, possibly by using cable bacteria as acceptors for electrons or electron equivalents, but by an as yet enigmatic mechanism. 
    more » « less