Abstract Plant ecological strategies are shaped by numerous functional traits and their trade‐offs. Trait network analysis enables testing hypotheses for the shifting of trait correlation architecture across communities differing in climate and productivity.We built plant trait networks (PTNs) for 118 species within six communities across an aridity gradient, from forest to semi‐desert across the California Floristic Province, based on 34 leaf and wood functional traits, representing hydraulic and photosynthetic function, structure, economics and size. We developed hypotheses for the association of PTN parameters with climate and ecosystem properties, based on theory for the adaptation of species to low resource/stressful environments versus higher resource availability environments with greater potential niche differentiation. Thus, we hypothesized that across community PTNs, trait network connectivity (i.e., the degree that traits are intercorrelated) and network complexity (i.e., the number of trait modules, and the degree of trait integration among modules) would be lower for communities adapted to arid climates and higher for communities adapted to greater water availability, similarly to trends expected for phylogenetic diversity, functional richness and productivity. Further, within given PTNs, we hypothesized that traits would vary strongly in their network connectivity and that the traits most centrally connected within PTNs would be those with the least across‐species variation.Across communities from more arid to wetter climates, PTN architecture varied from less to more interconnected and complex, in association with functional richness, but PTN architecture was independent of phylogenetic diversity and ecosystem productivity. Within the community PTNs, traits with lower species variation were more interconnected.Synthesis. The responsiveness of PTN architecture to climate highlights how a wide range of traits contributes to physiological and ecological strategies with an architecture that varies among plant communities. Communities in more arid environments show a lower degree of phenotypic integration, consistent with lesser niche differentiation. Our study extends the usefulness of PTNs as an approach to quantify tradeoffs among multiple traits, providing connectivity and complexity parameters as tools that clarify plant environmental adaptation and patterns of trait associations that would influence species distributions, community assembly, and ecosystem resilience in response to climate change.
more »
« less
This content will become publicly available on March 1, 2026
The roles of isolation and interspecific interaction in generating the functional diversity of an insular mammal radiation
Communities that occupy similar environments but vary in the richness of closely related species can illuminate how functional variation and species richness interact to fill ecological space in the absence of abiotic filtering, though this has yet to be explored on an oceanic island where the processes of community assembly may differ from continental settings. In discrete montane communities on the island of Sulawesi, local murine rodent (rats and mice) richness ranges from 7 to 23 species. We measured 17 morphological, ecological, and isotopic traits – both individually and as five multivariate traits – in 40 species to test for the expansion or packing of functional space among nine murine communities. We employed a novel probabilistic approach for integrating intraspecific and community‐level trait variance into functional richness. Trait‐specific and phylogenetic diversity patterns indicate dynamic community assembly due to variable niche expansion and packing on multiple niche axes. Locomotion and covarying traits such as tail length emerged as a fundamental axis of ecological variation, expanding functional space and enabling the niche packing of other traits such as diet and body size. Though trait divergence often explains functional diversity in island communities, we found that phylogenetic diversity facilitates functional space expansion in some conserved traits such as cranial shape, while more labile traits are overdispersed both within and between island clades, suggesting a role of niche complementarity. Our results evoke interspecific interactions, differences in trait lability, and the independent evolutionary trajectories of each of Sulawesi's six murine clades as central to generating the exceptional functional diversity and species richness in this exceptional, insular radiation.
more »
« less
- Award ID(s):
- 1754393
- PAR ID:
- 10596886
- Publisher / Repository:
- John Wiley & Sons Ltd
- Date Published:
- Journal Name:
- Oikos
- Volume:
- 2025
- Issue:
- 3
- ISSN:
- 0030-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Assemblages in seasonal ecosystems undergo striking changes in species composition and diversity across the annual cycle. Despite a long‐standing recognition that seasonality structures biogeographic gradients in taxonomic diversity (e.g., species richness), our understanding of how seasonality structures other aspects of biodiversity (e.g., functional diversity) has lagged. Integrating seasonal species distributions with comprehensive data on key morphological traits for bird assemblages across North America, we find that seasonal turnover in functional diversity increases with the magnitude and predictability of seasonality. Furthermore, seasonal increases in bird species richness led to a denser packing of functional trait space, but functional expansion was important, especially in regions with higher seasonality. Our results suggest that the magnitude and predictability of seasonality and total productivity can explain the geography of changes in functional diversity with broader implications for understanding species redistribution, community assembly and ecosystem functioning.more » « less
-
Jones, Julia A (Ed.)Abstract Studies of community assembly often explore the role of niche selection in limiting the diversity of functional traits (underdispersion) or increasing the diversity of functional traits (overdispersion) within local communities. While these patterns have primarily been explored with morphological functional traits related to environmental tolerances and resource acquisition, plant metabolomics may provide an additional functional dimension of community assembly to expand our understanding of how niche selection changes along environmental gradients. Here, we examine how the functional diversity of leaf secondary metabolites and traditional morphological plant traits changes along local environmental gradients in three temperate forest ecosystems across North America. Specifically, we asked whether co‐occurring tree species exhibit local‐scale over‐ or underdispersion of metabolomic and morphological traits, and whether differences in trait dispersion among local communities are associated with environmental gradients of soil resources and topography. Across tree species, we find that most metabolomic traits are not correlated with morphological traits, adding a unique dimension to functional trait space. Within forest plots, metabolomic traits tended to be overdispersed while morphological traits tended to be underdispersed. Additionally, local environmental gradients had site‐specific effects on metabolomic and morphological trait dispersion patterns. Taken together, these results show that different suites of traits can result in contrasting patterns of functional diversity along environmental gradients and suggest that multiple community assembly mechanisms operate simultaneously to structure functional diversity in temperate forest ecosystems.more » « less
-
Prieto Aguilar, Iván (Ed.)The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work in studies that simulate communities and trait distributions show consistent sensitivity of functional richness and evenness measures to the number of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. Therefore, we propose to test how the number of traits used and the correlation between traits used in the calculation of functional diversity indices impacts the magnitude of eight functional diversity metrics in real plant communities. We will use trait data from three grassland plant communities in the US to assess the generality of our findings across ecosystems and experiments. We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion, kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. Without a firm understanding of how a scientist’s choices impact these metric, it will be difficult to compare results among studies with different metric parametrization and thus, limit robust conclusions about functional composition of communities across systems.more » « less
-
Abstract An ongoing challenge in macroevolutionary research is identifying common drivers of diversification amid the complex interplay of many potentially relevant traits, ecological contexts, and intrinsic characteristics of clades. In this study, we used geometric morphometric and phylogenetic comparative methods to evaluate the tempo and mode of morphological evolution in an adaptive radiation of Malagasy birds, the vangas, and their mainland relatives (Aves:Vangidae). The Malagasy radiation is more diverse in both skull and foot shape. However, rather than following the classic “early burst” of diversification, trait evolution accelerated well after their arrival in Madagascar, likely driven by the evolution of new modes of foraging and especially of a few species with highly divergent morphologies. Anatomical regions showed differing evolutionary patterns, and the presence of morphological outliers impacted the results of some analyses, particularly of trait integration and modularity. Our results demonstrate that the adaptive radiation of Malagasy vangas has evolved exceptional ecomorphological diversity along multiple, independent trait axes, mainly driven by a late expansion in niche space due to key innovations. Our findings highlight the evolution of extreme forms as an overlooked feature of adaptive radiation warranting further study.more » « less
An official website of the United States government
