skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the impact of trait number and type on functional diversity metrics in real-world ecosystems
The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work in studies that simulate communities and trait distributions show consistent sensitivity of functional richness and evenness measures to the number of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. Therefore, we propose to test how the number of traits used and the correlation between traits used in the calculation of functional diversity indices impacts the magnitude of eight functional diversity metrics in real plant communities. We will use trait data from three grassland plant communities in the US to assess the generality of our findings across ecosystems and experiments. We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion, kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. Without a firm understanding of how a scientist’s choices impact these metric, it will be difficult to compare results among studies with different metric parametrization and thus, limit robust conclusions about functional composition of communities across systems.  more » « less
Award ID(s):
1831944 1655499 1753859
PAR ID:
10379635
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Prieto Aguilar, Iván
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
8
ISSN:
1932-6203
Page Range / eLocation ID:
e0272791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Boscutti, Francesco (Ed.)
    The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work with simulated communities and trait distributions shows sensitivity of functional diversity measures to the number and correlation of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. To address this gap, we used data from six grassland plant communities in Minnesota and New Mexico, USA to test how the number of traits and the correlation between traits used in the calculation of eight functional diversity indices impact the magnitude of functional diversity metrics in real plant communities. We found that most metrics were sensitive to the number of traits used to calculate them, but functional dispersion (FDis), kernel density estimation dispersion (KDE dispersion), and Rao’s quadratic entropy (Rao’s Q) maintained consistent rankings of communities across the range of trait numbers. Despite sensitivity of metrics to trait correlation, there was no consistent pattern between communities as to how metrics were affected by the correlation of traits used to calculate them. We recommend that future use of evenness metrics include sensitivity analyses to ensure results are robust to the number of traits used to calculate them. In addition, we recommend use of FDis, KDE dispersion, and Rao’s Q when ecologically applicable due to their ability to produce consistent rankings among communities across a range of the numbers of traits used to calculate them. 
    more » « less
  2. Communities that occupy similar environments but vary in the richness of closely related species can illuminate how functional variation and species richness interact to fill ecological space in the absence of abiotic filtering, though this has yet to be explored on an oceanic island where the processes of community assembly may differ from continental settings. In discrete montane communities on the island of Sulawesi, local murine rodent (rats and mice) richness ranges from 7 to 23 species. We measured 17 morphological, ecological, and isotopic traits – both individually and as five multivariate traits – in 40 species to test for the expansion or packing of functional space among nine murine communities. We employed a novel probabilistic approach for integrating intraspecific and community‐level trait variance into functional richness. Trait‐specific and phylogenetic diversity patterns indicate dynamic community assembly due to variable niche expansion and packing on multiple niche axes. Locomotion and covarying traits such as tail length emerged as a fundamental axis of ecological variation, expanding functional space and enabling the niche packing of other traits such as diet and body size. Though trait divergence often explains functional diversity in island communities, we found that phylogenetic diversity facilitates functional space expansion in some conserved traits such as cranial shape, while more labile traits are overdispersed both within and between island clades, suggesting a role of niche complementarity. Our results evoke interspecific interactions, differences in trait lability, and the independent evolutionary trajectories of each of Sulawesi's six murine clades as central to generating the exceptional functional diversity and species richness in this exceptional, insular radiation. 
    more » « less
  3. null (Ed.)
    Understanding factors affecting the functional diversity of ecological communities is an important goal for ecologists and conservationists. Previous work has largely been conducted at the community level; however, recent studies have highlighted the critical importance of considering intraspecific functional diversity (i.e. the functional diversity of phenotypic traits among conspecifics). Further, a major limitation of existing literature on this topic is the lack of empirical studies examining functional diversity of behavioural phenotypes —including animal personalities. This is a major shortcoming because personality traits can affect the fitness of individuals, and the composition of personalities in a population can have important ecological consequences. Our study aims to contribute to filling this knowledge gap by investigating factors affecting the functional diversity of personality traits in wild animal populations. Specifically, we predicted that the richness, divergence and evenness associated with personality traits would be impacted by key components of forest structure and would vary between contrasting forest types. To achieve our objective we conducted a fully replicated large-scale field experiment over a 4 year period using small mammal populations as a model system. We found that greater heterogeneity in the cover of shrubs, coarse woody debris and canopy cover was associated with a greater richness, lower divergence and lower evenness in personality traits. Greater population density was associated with greater functional richness and lower functional divergence and evenness of personality traits. To maintain a behaviourally diverse population and its associated functions, managers may promote heterogeneity in vegetation and increased population density, which we found to be the most important determinants driving functional diversity of personality traits. 
    more » « less
  4. Abstract Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community‐weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community‐weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community‐weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community‐weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community‐weighted trait means as well as their functional diversity across grassland ecosystems. 
    more » « less
  5. Abstract Soil microbial traits drive ecosystem functions, which can explain the positive correlation between microbial functional diversity and ecosystem function. However, microbial adaptation to climate change related warming stress can shift microbial traits with direct implications for soil carbon cycling. Here, we investigated how long-term warming affects the relationship between microbial trait diversity and ecosystem function. Soils were sampled after 24 years of +5°C warming alongside unheated control soils from the Harvard Forest Long-Term Ecological Research site. Ecosystem function was estimated from six different enzyme activities and microbial biomass. Functional diversity was calculated from metatranscriptomics sequencing, where reads were assigned to yield, acquisition, or stress trait categories. We found that in organic horizon soils, warming decreased the richness of acquisition-related traits. In the mineral soils, we observed that heated soils exhibited a negative relationship with the richness of acquisition-related traits. These results suggest that microbial communities exposed to long-term warming are shifting away from a resource acquisition life history strategy. 
    more » « less