Abstract Nearly 70 years old dream of incorporating molecule as the device element is still challenged by competing defects in almost every experimentally tested molecular device approach. This paper focuses on the magnetic tunnel junction (MTJ) based molecular spintronics device (MTJMSD) method. An MTJMSD utilizes a tunnel barrier to ensure a robust and mass-producible physical gap between two ferromagnetic electrodes. MTJMSD approach may benefit from MTJ's industrial practices; however, the MTJMSD approach still needs to overcome additional challenges arising from the inclusion of magnetic molecules in conjunction with competing defects. Molecular device channels are covalently bonded between two ferromagnets across the insulating barrier. An insulating barrier may possess a variety of potential defects arising during the fabrication or operational phase. This paper describes an experimental and theoretical study of molecular coupling between ferromagnets in the presence of the competing coupling via an insulating tunnel barrier. We discuss the experimental observations of hillocks and pinhole-type defects producing inter-layer coupling that compete with molecular device elements. We performed theoretical simulations to encompass a wide range of competition between molecules and defects. Monte Carlo Simulation (MCS) was used for investigating the defect-induced inter-layer coupling on MTJMSD. Our research may help understand and design molecular spintronics devices utilizing various insulating spacers such as aluminum oxide (AlOx) and magnesium oxide (MgO) on a wide range of metal electrodes. This paper intends to provide practical insights for researchers intending to investigate the molecular device properties via the MTJMSD approach and do not have a background in magnetic tunnel junction fabrication. 
                        more » 
                        « less   
                    
                            
                            Impact of direct exchange coupling via the insulator on the magnetic tunnel junction based molecular spintronics devices with competing molecule induced inter-electrode coupling
                        
                    
    
            The magnetic tunnel junction (MTJ) based molecular spintronics device (MTJMSD) approach is suitable for mass production. This approach provides solutions to fabrication difficulties related to reliably connecting molecular device elements to the ferromagnets (FMs). To producing MTJMSD, the molecular channels are bridged across the insulator of an MTJ testbed with exposed side edges. In an MTJMSD, two FMs are simultaneously connected by an insulator film and the molecular channels along the exposed sides. In our prior experimental studies, we observed that molecules could produce strong coupling between ferromagnets in the presence of the competing coupling via an insulator. In this paper, our Monte Carlo Simulation (MCS) was used to study the impact of coupling variation via insulator (a.k.a. Ji) on the magnetic properties of an MTJMSD. We studied the effect of Ji while varying the molecule induced antiferromagnetic exchange coupling. The ferromagnetic or antiferromagnetic nature and magnitude of Ji determined the resultant effect. Antiferromagnetic Ji enhanced the pre-existing antiferromagnetic molecular coupling effect. Ferromagnetic Ji competed with the opposite nature of antiferromagnetic molecular coupling. Our MCS may help to understand the impact of insulator thickness and defects on the molecular spintronics device performance and design process. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1914751
- PAR ID:
- 10596915
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Paramagnetic single-molecule magnets (SMMs) interacting with the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) produce a new system. The properties and future scope of new systems differ dramatically from the properties of isolated molecules and ferromagnets. However, it is unknown how far deep in the ferromagnetic electrode the impact of the paramagnetic molecule and ferromagnet interactions can travel for various levels of molecular spin states. Our prior experimental studies showed two types of paramagnetic SMMs, the hexanuclear Mn 6 and octanuclear Fe–Ni molecular complexes, covalently bonded to ferromagnets produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature leading to a number of intriguing observations (P. Tyagi, et al. , Org. Electron. , 2019, 64 , 188–194. P. Tyagi, et al. , RSC Adv. , 2020, 10 , (22), 13006–13015). This paper reports a Monte Carlo Simulations (MCS) study focusing on the impact of the molecular spin state on a cross junction shaped MTJ based molecular spintronics device (MTJMSD). Our MCS study focused on the Heisenberg model of MTJMSD and investigated the impact of various molecular coupling strengths, thermal energy, and molecular spin states. To gauge the impact of the molecular spin state on the region of ferromagnetic electrodes, we examined the spatial distribution of molecule-ferromagnet correlated phases. Our MCS study shows that under a strong coupling regime, the molecular spin state should be ∼30% of the ferromagnetic electrode's atomic spins to create long-range correlated phases.more » « less
- 
            Abstract Magnetic tunnel junction-based molecular spintronics device (MTJMSD) may enable novel magnetic metamaterials by chemically bonding magnetic molecules and ferromagnets (FM) with a vast range of magnetic anisotropy. MTJMSD have experimentally shown intriguing microscopic phenomenon such as the development of highly contrasting magnetic phases on a ferromagnetic electrode at room temperature. This paper focuses on Monte Carlo Simulations (MCS) on MTJMSD to understand the potential mechanism and explore fundamental knowledge about the impact of magnetic anisotropy. The selection of MCS is based on our prior study showing the potential of MCS in explaining experimental results (Tyagi et al. in Nanotechnology 26:305602, 2015). In this paper, MCS is carried out on the 3D Heisenberg model of cross-junction-shaped MTJMSDs. Our research represents the experimentally studied cross-junction-shaped MTJMSD where paramagnetic molecules are covalently bonded between two FM electrodes along the exposed side edges of the magnetic tunnel junction (MTJ). We have studied atomistic MTJMSDs properties by simulating a wide range of easy-axis anisotropy for the case of experimentally observed predominant molecule-induced strong antiferromagnetic coupling. Our study focused on understanding the effect of anisotropy of the FM electrodes on the overall MTJMSDs at various temperatures. This study shows that the multiple domains of opposite spins start to appear on an FM electrode as the easy-axis anisotropy increases. Interestingly, MCS results resembled the experimentally observed highly contrasted magnetic zones on the ferromagnetic electrodes of MTJMSD. The magnetic phases with starkly different spins were observed around the molecular junction on the FM electrode with high anisotropy.more » « less
- 
            With a variable spin state, paramagnetic molecules can affect the impact of magnetic exchange coupling strength between two ferromagnetic electrodes. Our magnetic tunnel junction based molecular spintronics devices (MTJMSD) were successful in connecting paramagnetic single molecular magnet (SMM) between two ferromagnetic electrodes. Isolated SMM exhibited a wide range of spin states. However, it was extremely challenging to identify the SMM spin state when connected to the ferromagnetic electrodes. Our prior experimental and Monte Carlo Simulations (MCS) studies showed that paramagnetic molecules produced unprecedented strong antiferromagnetic coupling between two ferromagnets at room temperature. The overall antiferromagnetic coupling occurred when a paramagnetic SMM made antiferromagnetic coupling to the first electrode and ferromagnetic coupling to the second ferromagnetic electrode. This paper studies the impact of variable molecular spin states of the SMMs, producing strong antiferromagnetic coupling between the ferromagnetic electrodes of MTJMSD. The MTJMSD used in this study was represented by an 11 x 50 x 50 Ising model, with 11 being the thickness of the MTJMSD and 5 x 10 x 50 being each electrode’s size. We employed a continuous MCS algorithm to investigate SMM’s spin state’s impact as a function of molecular exchange coupling strength and thermal energy.more » « less
- 
            "Magnetic tunnel junction-based molecular spintronics devices (MTJMSDs) are designed by covalently connecting the paramagnetic molecules across two ferromagnets (FM) electrodes of a magnetic tunnel junction (MTJ). MTJMSD provides opportunities to connect FM electrodes of a vast range of anisotropy properties to a variety of molecules of length scale. Our prior studies showed that the paramagnetic molecules can produce strong antiferromagnetic coupling with FM electrodes. The device properties of MTJMSD depend upon various factors such as anisotropy, various couplings, spin fluctuation, thermal energy, device size, etc. Here, we report a theoretical Monte Carlo Simulation (MCS) study to explain the impact of anisotropy on the MTJMSD equilibrium properties. We studied the magnetic properties of MTJMSDs when in-plane and out-of-plane anisotropies acted simultaneously and together on one of its ferromagnetic electrodes. In-plane anisotropy causes multiple magnetic phases of opposite spins. The multiple magnetic phases vanished at higher thermal energy. The device still maintained higher magnetic moment because of anisotropy. The out-of-plane anisotropy caused a dominant magnetic phase in an electrode rather than multiple magnetic phases. The simultaneous in-plane and out-of-plane anisotropies on the same electorate negated the anisotropy effect. The study of the competing effect of anisotropies opens the insight into experimental observations of MTJMSD studies."more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
