skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pulse instabilities can shape virus-immune coevolution
Adaptive immune systems engage in an arms race with evolving viruses, trying to generate new responses to viral strains that continually move away from the set of genetically varying strains that have already elicited a functional immune response. It has been argued that this dynamical process can lead to a propagating pulse of an ever-changing viral population and concomitant immune response. Here, we introduce a new stochastic model of viral-host coevolution, taking into account finite-sized host populations and varying processes of immune “forgetting”. Using both stochastic and deterministic calculations, we show that there is indeed a possible pulse solution, but for a large host population size and for finite memory capacity, the pulse becomes unstable to the generation of new infections in its wake. This instability leads to an extended endemic infection pattern, demonstrating that the population-level behavior of virus infections can exhibit a wider range of behavior than had been previously realized. Published by the American Physical Society2024  more » « less
Award ID(s):
2019745
PAR ID:
10597065
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
3
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide some evidence for nonzero electron velocity at the tunnel exit in strong-field atomic ionization. Our investigation is based on the analysis of a suitably chosen correlation function which describes correlations between the two observables: the longitudinal electron velocity and the appearance of the photoelectron in the continuum at the end of the laser pulse. The results of the correlation function analysis that we perform are confirmed by the calculations using the quantum orbits method. Published by the American Physical Society2024 
    more » « less
  2. We use publicly available data to perform a search for correlations of high energy neutrino candidate events detected by IceCube and high-energy photons seen by the HAWC Collaboration. Our search is focused on unveiling such correlations outside of the Galactic plane. This search is sensitive to correlations in the neutrino candidate and photon skymaps which would arise from a population of unidentified point sources. We find no evidence for such a correlation, but suggest strategies for improvements with new datasets. Published by the American Physical Society2024 
    more » « less
  3. Imaginary-time response functions of finite-temperature quantum systems are often obtained with methods that exhibit stochastic or systematic errors. Reducing these errors comes at a large computational cost—in quantum Monte Carlo simulations, the reduction of noise by a factor of two incurs a simulation cost of a factor of four. In this paper, we relate certain imaginary-time response functions to an inner product on the space of linear operators on Fock space. We then show that data with noise typically does not respect the positive definiteness of its associated Gramian. The Gramian has the structure of a Hankel matrix. As a method for denoising noisy data, we introduce an alternating projection algorithm that finds the closest positive definite Hankel matrix consistent with noisy data. We test our methodology at the example of fermion Green's functions for continuous-time quantum Monte Carlo data and show remarkable improvements of the error, reducing noise by a factor of up to 20 in practical examples. We argue that Hankel projections should be used whenever finite-temperature imaginary-time data of response functions with errors is analyzed, be it in the context of quantum Monte Carlo, quantum computing, or in approximate semianalytic methodologies. Published by the American Physical Society2024 
    more » « less
  4. No AbstractPublished by the Jagiellonian University2024authors 
    more » « less
  5. We describe our implementation of fermionic tensor network contraction on arbitrary lattices within both a globally ordered and a locally ordered formalism. We provide a pedagogical description of these two conventions as implemented for the quimb library. Using hyperoptimized approximate contraction strategies, we present benchmark fermionic projected entangled pair state simulations of finite Hubbard models defined on the three-dimensional diamond lattice and random regular graphs. Published by the American Physical Society2025 
    more » « less