skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Prepivoted Augmented Dickey-Fuller Test with Bootstrap-Assisted Lag Length Selection
We investigate the application of prepivoting in conjunction with lag length selection to correct the size and power performance of the Augmented Dickey-Fuller test for a unit root. The bootstrap methodology used to perform the prepivoting is a residual based AR bootstrap that ensures that bootstrap replicate time series are created under the null irrespective of whether the originally observed series obeys the null hypothesis or not. Simulation studies wherein we examine the performance of our proposed method are given; we evaluate our method’s performance on ARMA(1,1) models with varying configurations for size and power performance. We also propose a novel data dependent lag selection technique that uses bootstrap data under the null to select an optimal lag length; the performance of our method is compared to existing lag length selection criteria.  more » « less
Award ID(s):
2413718
PAR ID:
10597110
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Stats
Volume:
7
Issue:
4
ISSN:
2571-905X
Page Range / eLocation ID:
1226 to 1244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary We establish a general theory of optimality for block bootstrap distribution estimation for sample quantiles under mild strong mixing conditions. In contrast to existing results, we study the block bootstrap for varying numbers of blocks. This corresponds to a hybrid between the sub- sampling bootstrap and the moving block bootstrap, in which the number of blocks is between 1 and the ratio of sample size to block length. The hybrid block bootstrap is shown to give theoretical benefits, and startling improvements in accuracy in distribution estimation in important practical settings. The conclusion that bootstrap samples should be of smaller size than the original sample has significant implications for computational efficiency and scalability of bootstrap methodologies with dependent data. Our main theorem determines the optimal number of blocks and block length to achieve the best possible convergence rate for the block bootstrap distribution estimator for sample quantiles. We propose an intuitive method for empirical selection of the optimal number and length of blocks, and demonstrate its value in a nontrivial example. 
    more » « less
  2. Abstract Cumulative sum (CUSUM) statistics are widely used in the change point inference and identification. For the problem of testing for existence of a change point in an independent sample generated from the mean-shift model, we introduce a Gaussian multiplier bootstrap to calibrate critical values of the CUSUM test statistics in high dimensions. The proposed bootstrap CUSUM test is fully data dependent and it has strong theoretical guarantees under arbitrary dependence structures and mild moment conditions. Specifically, we show that with a boundary removal parameter the bootstrap CUSUM test enjoys the uniform validity in size under the null and it achieves the minimax separation rate under the sparse alternatives when the dimension p can be larger than the sample size n. Once a change point is detected, we estimate the change point location by maximising the ℓ∞-norm of the generalised CUSUM statistics at two different weighting scales corresponding to covariance stationary and non-stationary CUSUM statistics. For both estimators, we derive their rates of convergence and show that dimension impacts the rates only through logarithmic factors, which implies that consistency of the CUSUM estimators is possible when p is much larger than n. In the presence of multiple change points, we propose a principled bootstrap-assisted binary segmentation (BABS) algorithm to dynamically adjust the change point detection rule and recursively estimate their locations. We derive its rate of convergence under suitable signal separation and strength conditions. The results derived in this paper are non-asymptotic and we provide extensive simulation studies to assess the finite sample performance. The empirical evidence shows an encouraging agreement with our theoretical results. 
    more » « less
  3. Abstract This note introduces the estimation of aquifer diffusivity (D) through simultaneous inversion of the attenuation and lag of multiple head fluctuation frequencies due to a dynamic source or boundary, that is, a river. Spectral analysis, with optimized moving time window length and step size, was used to extract the dominant constituents and their attenuation through space; the cross‐power spectral density method was used to determine time lags. The Jacob‐Ferris analytical model was then used for inverting forD. Unlike most similar applications to date, here we propose using all frequencies with robust signal‐to‐noise ratios (five total in our test cases) and both the amplitude attenuation and time lag in the inversion. The method was implemented using observations from wells in the banks of the fluctuating Meghna River in Bangladesh that is connected with a semi‐confined sandy alluvial aquifer. The estimatedDusing the technique provides estimates that are very similar to those from pumping tests. The estimates are more accurate compared to previous implementation of the Jacob‐Ferris model on the same data that used only a dominant frequency's amplitude attenuation or time lag. The workflow and codes for the analysis are provided for straightforward implementation of the robust and cost‐effective method. 
    more » « less
  4. Abstract Mediation analysis aims to assess if, and how, a certain exposure influences an outcome of interest through intermediate variables. This problem has recently gained a surge of attention due to the tremendous need for such analyses in scientific fields. Testing for the mediation effect (ME) is greatly challenged by the fact that the underlying null hypothesis (i.e. the absence of MEs) is composite. Most existing mediation tests are overly conservative and thus underpowered. To overcome this significant methodological hurdle, we develop an adaptive bootstrap testing framework that can accommodate different types of composite null hypotheses in the mediation pathway analysis. Applied to the product of coefficients test and the joint significance test, our adaptive testing procedures provide type I error control under the composite null, resulting in much improved statistical power compared to existing tests. Both theoretical properties and numerical examples of the proposed methodology are discussed. 
    more » « less
  5. We derive several tests for the presence of a periodic component in a time series of functions. We consider both the traditional setting in which the periodic functional signal is contaminated by functional white noise, and a more general setting of a weakly dependent contaminating process. Several forms of the periodic component are considered. Our tests are motivated by the likelihood principle and fall into two broad categories, which we term multivariate and fully functional. Generally, for the functional series that motivate this research, the fully functional tests exhibit a superior balance of size and power. Asymptotic null distributions of all tests are derived and their consistency is established. Their finite sample performance is examined and compared by numerical studies and application to pollution data. 
    more » « less