skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 22, 2026

Title: Search for Gravitational Waves Emitted from SN 2023ixf
Abstract We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19, during the LIGO–Virgo–KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered ∼14% of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz, where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy 1 × 10−4Mc2and luminosity 2.6 × 10−4Mc2s−1for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results.  more » « less
Award ID(s):
2309242 2409745 2110460 2450793 2309212 2012057 2409530 2438319 2409372 2011334 2308693 2319063 2207728 2309161 2110594
PAR ID:
10597133
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
985
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The existence of compact stellar remnants in the mass range 2–5Mhas long been debated. This so-called lower-mass gap (LMG) was initially suggested by the lack of low-mass X-ray binary observations with accretors about 2–5M, but it has recently been called into question following newer observations, including an LMG candidate with a millisecond pulsar (MSP) companion in the dense globular cluster NGC 1851. Here, we model NGC 1851 with a grid of similar dense star clusters utilizing the state-of-the-art Monte CarloN-body code Cluster Monte Carlo, and we specifically study the formation of LMG black holes (BHs). We demonstrate that both massive star evolution and dynamical interactions can contribute to forming LMG BHs. In general, the collapse of massive remnants formed through mergers of neutron stars (NSs) or massive white dwarfs produces the largest number of LMG BHs among all formation channels. However, in more massive clusters, supernova core collapse can contribute comparable numbers. Our NGC 1851-like models can reproduce MSP—LMG BH binaries similar to the observed system. Additionally, the LMG BHs can also become components of dynamically assembled binaries, and some will be in merging BH–NS systems similar to the recently detected gravitational wave source GW230529. However, the corresponding merger rate is probably ≲1 Gpc−3yr−1
    more » « less
  2. Abstract Although stable neutron stars (NSs) can in principle exist down to massesMns≈ 0.1M, standard models of stellar core-collapse predict a robust lower limitMns≳ 1.2M, roughly commensurate with the Chandrasekhar massMChof the progenitor’s iron core (electron fractionYe≈ 0.5). However, this limit may be circumvented in sufficiently dense neutron-rich environments (Ye< 0.5) for which M Ch Y e 2 is reduced to ≲1M. Such physical conditions could arise in the black hole accretion disks formed from the collapse of rapidly rotating stars (“collapsars”), as a result of gravitational instabilities and cooling-induced fragmentation, similar to models for planet formation in protostellar disks. We confirm that the conditions to form subsolar-mass NS (ssNS) may be marginally satisfied in the outer regions of massive neutrino-cooled collapsar disks. If the disk fragments into multiple ssNSs, their subsequent coalescence offers a channel for precipitating subsolar mass LIGO/Virgo gravitational-wave mergers that does not implicate primordial black holes. The model makes several additional predictions: (1) ∼Hz frequency Doppler modulation of the ssNS-merger gravitational-wave signals due to the binary’s orbital motion in the disk; (2) at least one additional gravitational-wave event (coincident within ≲hours), from the coalescence of the ssNS-merger remnant(s) with the central black hole; (3) an associated gamma-ray burst and supernova counterpart, the latter boosted in energy and enriched withr-process elements from the NS merger(s) embedded within the exploding stellar envelope (“kilonovae inside a supernova”). 
    more » « less
  3. Abstract We report on a search for continuous gravitational waves (GWs) from NS 1987A, the neutron star born in SN 1987A. The search covered a frequency band of 75–275 Hz, included a wide range of spin-down parameters for the first time, and coherently integrated 12.8 days of LIGO data below 125 Hz and 8.7 days of LIGO data above 125 Hz from the second Advanced LIGO–Virgo observing run. We found no astrophysical signal. We set upper limits on GW emission as tight as an intrinsic strain of 2 × 10−25at 90% confidence. The large spin-down parameter space makes this search the first astrophysically consistent one for continuous GWs from NS 1987A. Our upper limits are the first consistent ones to beat an analog of the spin-down limit based on the age of the neutron star and hence are the first GW observations to put new constraints on NS 1987A. 
    more » « less
  4. Abstract Black hole–neutron star binaries are of interest in many ways: they are intrinsically transient, radiate gravitational waves detectable by LIGO, and may produceγ-ray bursts. Although it has long been assumed that their late-stage orbital evolution is driven entirely by gravitational wave emission, we show here that in certain circumstances, mass transfer from the neutron star onto the black hole can both alter the binary's orbital evolution and significantly reduce the neutron star's mass: when the fraction of its mass transferred per orbit is ≳10−2, the neutron star's mass diminishes by order unity, leading to mergers in which the neutron star mass is exceptionally small. The mass transfer creates a gas disk around the black holebeforemerger that can be comparable in mass to the debris remaining after merger, i.e., ~0.1M. These processes are most important when the initial neutron star–black hole mass ratioqis in the range ≈0.2–0.8, the orbital semimajor axis is 40 ≲ a0/rg ≲ 300 (rg ≡ GMBH/c2), and the eccentricity is large ate0 ≳ 0.8. Systems of this sort may be generated through the dynamical evolution of a triple system, as well as by other means. 
    more » « less
  5. Abstract GW230529 is the first compact binary coalescence detected by the LIGO–Virgo–KAGRA collaboration with at least one component mass confidently in the lower mass gap, corresponding to the range 3–5M. If interpreted as a neutron star–black hole merger, this event has the most symmetric mass ratio detected so far and therefore has a relatively high probability of producing electromagnetic (EM) emission. However, no EM counterpart has been reported. At the merger timet0, Swift-BAT and Fermi-GBM together covered 100% of the sky. Performing a targeted search in a time window [t0− 20 s,t0+ 20 s], we report no detection by the Swift-BAT and Fermi-GBM instruments. Combining the position-dependentγ-ray flux upper limits and the gravitational-wave posterior distribution of luminosity distance, sky localization, and inclination angle of the binary, we derive constraints on the characteristic luminosity and structure of the jet possibly launched during the merger. Assuming atop-hatjet structure, we exclude at 90% credibility the presence of a jet that has at the same time an on-axis isotropic luminosity ≳1048erg s−1in the bolometric band 1 keV–10 MeV and a jet opening angle ≳15°. Similar constraints are derived by testing other assumptions about the jet structure profile. Excluding GRB 170817A, the luminosity upper limits derived here are below the luminosity of any GRB observed so far. 
    more » « less