Polar metals are an intriguing class of materials that simultaneously host free carriers and polar structural distortions. Despite the name “polar metal,” however, most well-studied polar metals are poor electrical conductors. Here, we demonstrate the molecular beam epitaxial growth of LaPtSb and LaAuGe, two polar metal compounds whose electrical resistivity is an order of magnitude lower than the well studied oxide polar metals. These materials belong to a broad family of ABC intermetallics adopting the stuffed wurtzite structure, also known as hexagonal Heusler compounds. Scanning transmission electron microscopy reveals a polar structure with unidirectionally buckled BC (PtSb and AuGe) planes. Magnetotransport measurements demonstrate good metallic behavior with low residual resistivity (ρLaAuGe = 59.05 μΩ cm and ρLaAPtSb = 27.81 μΩ cm at 2 K) and high carrier density (nh ∼ 1021 cm−3). Photoemission spectroscopy measurements confirm the band metallicity and are in quantitative agreement with density functional theory (DFT) calculations. Through DFT-chemical pressure and crystal orbital Hamilton population analyses, the atomic packing factor is found to support the polar buckling of the structure although the degree of direct interlayer B–C bonding is limited by repulsion at the A–C contacts. When combined with predicted ferroelectric hexagonal Heuslers, these materials provide a new platform for fully epitaxial, multiferroic heterostructures.
more »
« less
Correlating polar distortions and interfacial charge at the polar/non-polar LaCrO3/SrTiO3 (001) interface
The relationship between the sheet carrier concentration, ns, of LaCrO3(LCO)/SrTiO3(STO) heterostructures and their structural properties has been investigated. Under low oxygen partial pressure, the STO substrate is reduced during growth as evidenced by a high ns of 1016 cm−2. By controlling the post-growth annealing conditions, heterostructures with ns of 1013–1016 cm−2 are achieved. The atomic-scale structure of the samples is obtained using high-resolution synchrotron x-ray diffraction measurements. For heterostructures with ns at or below 3 × 1013 cm−2, polar distortions are present within the LCO layers and increase in magnitude with a decrease in sheet carrier concentration. These distortions are absent for samples with ns on the order of 1015–1016 cm−2 where interfacial carriers play a role in alleviating the polar discontinuity at the LCO/STO interface. These results suggest that interfacial charge carriers and polar distortions can act as complementary mechanisms to alleviate the polar discontinuity at polar/non-polar complex oxide interfaces.
more »
« less
- Award ID(s):
- 1751455
- PAR ID:
- 10597179
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conductive atomic force microscope (c-AFM) lithography can be utilized to create a wide range of LaAlO3/SrTiO3 (LAO/STO)-based nanoelectronic devices in a reconfigurable manner. Experiments were generally performed with intrinsically insulating LAO/STO heterostructures, with LAO thickness less than the critical value at which a polar catastrophe takes place [<4 unit cell (u.c.)]. Here, we use inductively coupled plasma reactive ion etching (ICPRIE) to fabricate c-AFM “canvases” on intrinsically conducting LAO/STO samples with ≥4 u.c. LAO. We observe that its interfacial two-dimensional electron gas (2DEG) can be pinched off and then switched back on by c-AFM lithography. Nanowires created with initially conductive LAO/STO interfaces have an order-of-magnitude longer lifetime in ambient conditions, when compared to an identically created 3.4 u.c. LAO/STO nanowire. We also demonstrate key nanoscale properties such as ballistic transport in a quasi-one-dimensional electron waveguide at a 5 u.c. LAO/STO interface. This approach frees c-AFM-written nanodevice designs from time constraints in air associated with <4 u.c. LAO/STO heterostructures.more » « less
-
Abstract Films of α-Ga2O3 (Sn) grown by Halide Vapor Phase Epitaxy (HVPE) on sapphire with starting net donor densities in the range 5×1015- 8.4×1019 cm-3 were irradiated at room temperature with 1.1 MeV protons to fluences from 1013 -1016 cm-2. For the lowest doped samples, the carrier removal rate was ~35 cm-1 at 1014 cm-2 and ~1.3 cm-1 for 1015 cm-2 proton fluence. The observed removal rate could be accounted for by the introduction of deep acceptors with optical ionization energies of 2 eV, 2.8 eV and 3.1 eV. For doped samples doped at 4x1018 cm-3, the initial electron removal rate was 5×103 cm-1 for 1015 cm-2 proton fluence and ~300 cm-1 for 1016 cm-2 proton fluence. The same deep acceptors were observed in photocapacitance spectra, but their introduction rate was orders of magnitude lower than the carrier removal rate. For the heaviest doped samples, an electron removal rate could be measured only after irradiation with the highest proton fluence of 1016 cm-2 and was close to that measured for the 4×1018 cm-3 sample after exposure to the same fluence. Possible reasons for the observed behavior are discussed and radiation tolerances of lightly doped α-Ga2O3 films is higher than for similarly doped β-Ga2O3 layers.more » « less
-
The polarization difference and band offset between Al(Ga)N and GaN induce two-dimensional (2D) free carriers in Al(Ga)N/GaN heterojunctions without any chemical doping. A high-density 2D electron gas (2DEG), analogous to the recently discovered 2D hole gas in a metal-polar structure, is predicted in a N-polar pseudomorphic GaN/Al(Ga)N heterostructure on unstrained AlN. We report the observation of such 2DEGs in N-polar undoped pseudomorphic GaN/AlGaN heterostructures on single-crystal AlN substrates by molecular beam epitaxy. With a high electron density of ∼4.3 ×1013/cm2 that maintains down to cryogenic temperatures and a room temperature electron mobility of ∼450 cm2/V s, a sheet resistance as low as ∼320 Ω/◻ is achieved in a structure with an 8 nm GaN layer. These results indicate significant potential of AlN platform for future high-power RF electronics based on N-polar III-nitride high electron mobility transistors.more » « less
-
Abstract A variety of mechanisms are reported to play critical roles in contributing to the high carrier/electron mobility in oxide/SrTiO3(STO) heterostructures. By using La0.95Sr0.05TiO3(LSTO) epitaxially grown on different single crystal substrates (such as STO, GdScO3, LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and CeO2buffered STO) as the model systems, the formation of a conducting substrate surface layer (CSSL) on STO substrate is shown at relatively low growth temperature and high oxygen pressure (725 °C, 5 × 10–4 Torr), which contributes to the enhanced conductivity of the LSTO/STO heterostructures. Different from the conventional oxygen vacancy model, this work reveals that the formation of the CSSL occurs when growing an oxide layer (LSTO in this case) on STO, while neither annealing nor the growth of an Au layer alone at the exact same growth condition generates the CSSL in STO. It demonstrates that the oxide layer actively pulls oxygen from STO substrate at given growth conditions, leading to the formation of the CSSL. The observations emphasize the oxygen transfer across film/substrate interface during the synthesis of oxide heterostructures playing a critical role in functional properties.more » « less
An official website of the United States government
