skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using EC-STM to obtain an understanding of amino acid adsorption on Au(111)
With increasing interest into the origin of life as well as the advancement of medical research using nanostructured architectures, investigations into amino acid assemblies have increased heavily in the field of surface science. Amino acid self/assisted-assembly on metallic surfaces is typically investigated with Scanning Tunneling Microscopy at low temperatures and under ultra-high vacuum in order to maintain a pristine surface and to provide researchers the tools to atomically interrogate the surface. However, in doing so, results often tend to be uncertain when moving to more realistic conditions. The investigation presented focuses on the electrochemical STM study of five simple amino acids as well as two modifications of a single amino acid and the means by which they interact with Au(111). Using EC-STM under in situ conditions, the amino acids were shown to have a considerable interaction with the underlying surface. In all cases, the amino acids trapped diffusing adatoms to form islands. These findings have also been observed under UHV conditions, but this is the first demonstration of the correlation in situ. Results indicate that an increase in the molecular footprint of the amino acid had a subsequent increase in the area of the islands formed. Furthermore, by shifting from a nonpolar to polar side chain, island area also increased. By analyzing the results gathered via EC-STM, fundamental insight can be gained into not only the behavior of amino acids with the underlying surface, but also into the direct comparison of LT-UHV-STM data with imaging performed under ambient conditions.  more » « less
Award ID(s):
1833019
PAR ID:
10597241
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
9
Issue:
10
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical atomic force microscopy (EC-AFM) experiments, including simultaneous linear polarization resistance (LPR) tests and in situ AFM imaging, under a CO2 atmosphere, were performed to investigate the adsorption characteristics and inhibition effects of a tetradecyldimethylbenzylammonium corrosion inhibitor model compound. When the inhibitor bulk concentration was at 0.5 critical micelle concentration (CMC), in situ AFM results indicated nonuniform tilted monolayer formation on the mica surface and EC-AFM results indicated partial corrosion of the UNS G10180 steel surface. At 2 CMC, a uniform tilted bilayer or perpendicular monolayer was detected on mica, and corrosion with UNS G10180 steel was uniformly retarded. Consistently, simultaneous LPR tests showed that corrosion rates decreased as the inhibitor concentration increased until it reached the surface saturation value (1 and 2 CMC). Molecular simulations have been performed to study the formation of the inhibitor layer and its molecular-level structure. Simulation results showed that at the initiation of the adsorption process, islands of adsorbed inhibitor molecules appear on the surface. These islands grow and coalesce to become a complete self-assembled layer. 
    more » « less
  2. Gottesman, Susan (Ed.)
    ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O 2 -dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O 2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes. 
    more » « less
  3. This first-principles study investigates the interactions between amino acids and various types of montmorillonite clay surfaces, including a pristine surface, a surface with an oxygen vacancy, a surface with a silicon vacancy, and an Fe-doped surface. Our results show that all clay surfaces exhibit negative binding energies, indicating that the interaction between clay and amino acids is thermodynamically favorable. Among them, the surface with a Si vacancy displays the most negative binding energy, corresponding to the strongest interaction. We also examine the reactions between two alanine molecules to form a dipeptide molecule through the elimination of a water molecule in the absence of clay surfaces. The transition state search suggests that a proton transfer plays a critical role in the peptide bond formation based on structural and energetic features observed along the reaction path. Circular dichroism spectra computed for reactant, intermediate, and product states show distinct chiral signatures. Wave packet dynamics calculations indicate that quantum tunneling might be the mechanism underlying the reduced activation energy at low temperatures. These findings offer insight into the physicochemical processes at clay–amino acid interfaces and support the design of clay-based materials with applications in biotechnology and prebiotic chemistry. 
    more » « less
  4. Ultra-high vacuum scanning tunneling microscopy (UHV-STM) was used to investigate two related molecules pulse-deposited onto Au(111) surfaces: indoline-2-carboxylic acid and proline (pyrrolidine-2-carboxylic acid). 
    more » « less
  5. Abstract Electrocatalysis and photoelectrochemistry are critical to technologies like fuel cells, electrolysis, and solar fuels. Material stability and interfacial phenomena are central to the performance and long‐term viability of these technologies. Researchers need tools to uncover the fundamental processes occurring at the electrode/electrolyte interface. Numerous analytical instruments are well‐developed for material characterization, but many are ex situ techniques often performed under vacuum and without applied bias. Such measurements miss dynamic phenomena in the electrolyte under operational conditions. However, innovative advancements have allowed modification of these techniques for in situ characterization in liquid environments at electrochemically relevant conditions. This review explains some of the main in situ electrochemical characterization techniques, briefly explaining the principle of operation and highlighting key work in applying the method to investigate material stability and interfacial properties for electrocatalysts and photoelectrodes. Covered methods include spectroscopy (in situ UV–vis, ambient pressure X‐ray photoelectron spectroscopy (APXPS), and in situ Raman), mass spectrometry (on‐line inductively coupled plasma mass spectrometry (ICP‐MS) and differential electrochemical mass spectrometry (DEMS)), and microscopy (in situ transmission electron microscopy (TEM), electrochemical atomic force microscopy (EC‐AFM), electrochemical scanning tunneling microscopy (EC‐STM), and scanning electrochemical microscopy (SECM)). Each technique's capabilities and advantages/disadvantages are discussed and summarized for comparison. 
    more » « less