skip to main content


Title: Investigation of Corrosion Inhibitor Adsorption on Mica and Mild Steel Using Electrochemical Atomic Force Microscopy and Molecular Simulations
Electrochemical atomic force microscopy (EC-AFM) experiments, including simultaneous linear polarization resistance (LPR) tests and in situ AFM imaging, under a CO2 atmosphere, were performed to investigate the adsorption characteristics and inhibition effects of a tetradecyldimethylbenzylammonium corrosion inhibitor model compound. When the inhibitor bulk concentration was at 0.5 critical micelle concentration (CMC), in situ AFM results indicated nonuniform tilted monolayer formation on the mica surface and EC-AFM results indicated partial corrosion of the UNS G10180 steel surface. At 2 CMC, a uniform tilted bilayer or perpendicular monolayer was detected on mica, and corrosion with UNS G10180 steel was uniformly retarded. Consistently, simultaneous LPR tests showed that corrosion rates decreased as the inhibitor concentration increased until it reached the surface saturation value (1 and 2 CMC). Molecular simulations have been performed to study the formation of the inhibitor layer and its molecular-level structure. Simulation results showed that at the initiation of the adsorption process, islands of adsorbed inhibitor molecules appear on the surface. These islands grow and coalesce to become a complete self-assembled layer.  more » « less
Award ID(s):
1705817
NSF-PAR ID:
10416618
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Corrosion
Volume:
78
Issue:
10
ISSN:
0010-9312
Page Range / eLocation ID:
990 to 1002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Application of inhibitors is an established and cost-effective method to mitigate internal corrosion of mild steel pipelines in the oil and gas industry. Conventionally, surfactant-type organic inhibitors are frequently applied based on their critical micelle concentration (CMC) values and their adsorption to mild steel evaluated based on laboratory tests that show a reduction in corrosion rate. In this work, the relationship between reduction in corrosion rate, CMC and inhibitor surface saturation concentration on mild steel was studied using model quaternary ammonium inhibitors with different alkyl tail lengths. The quaternary ammonium model compounds were synthesized in-house and characterized by 1H-NMR before their use. Their CMCs were determined using surface tension measurements. Results showed that, although the CMC value and surface saturation concentration were the same for two of the inhibitors tested, there was no relationship observed between measured CMC values, surface saturation concentrations, and the calculated corrosion efficiencies for the five model inhibitor compounds tested. Consequently, using CMC values as a measurement for injection of inhibitors might not be considered as a reliable factor. 
    more » « less
  2. Abstract

    While phosphonium phosphate ionic liquids (ILs) have been evaluated as additives for engine oils owing to their excellent physico‐chemical properties, miscibility with hydrocarbon fluids, and promising tribological properties, their lubrication mechanism is still not established. Here, atomic force microscopy (AFM) nanotribological experiments are performed using diamond‐like carbon‐coated silicon tips sliding on air‐oxidized steel in neat trihexyltetradecylphosphonium bis(2‐ethylhexyl)phosphate IL. The AFM results indicate a reduction in friction only after the removal of the native oxide layer from steel. Laterally resolved analyses of the steel surface chemistry reveal a higher concentration of bis(2‐ethylhexyl)phosphate ions adsorbed on regions where the native oxide is mechanically removed together with a change in surface electrostatic potential. These surface modifications are proposed to be induced by a change in adsorption configuration of bis(2‐ethylhexyl)phosphate anions on metallic iron compared to their configuration on iron oxide together with a reduction of surface roughness, which lead to the formation of a densely packed, lubricious boundary layer only on metallic iron.

     
    more » « less
  3. Two-dimensional materials composed of transition metal carbides and nitrides (MXenes) are poised to revolutionize energy conversion and storage. In this work, we used density functional theory (DFT) to investigate the adsorption of Mg and Na adatoms on five M 2 CS 2 monolayers (where M = Mo, Nb, Ti, V, and Zr) for battery applications. We assessed the stability of the adatom ( i.e. Na and Mg)-monolayer systems by calculating adsorption and formation energies, as well as voltages as a function of surface coverage. For instance, we found that Mo 2 CS 2 cannot support a full layer of Na nor even a single Mg atom. Na and Mg exhibit the strongest binding on Zr 2 CS 2 , followed by Ti 2 CS 2 , Nb 2 CS 2 and V 2 CS 2 . Using the nudged elastic band method (NEB), we computed promising diffusion barriers for both dilute and nearly full ion surface coverage cases. In the dilute ion adsorption case, a single Mg and Na atom on Ti 2 CS 2 experience ∼0.47 eV and ∼0.10 eV diffusion barriers between the lowest energy sites, respectively. For a nearly full surface coverage, a Na ion moving on Ti 2 CS 2 experiences a ∼0.33 eV energy barrier, implying a concentration-dependent diffusion barrier. Our molecular dynamics results indicate that the three (one) layers (layer) of the Mg (Na) ion on both surfaces of Ti 2 CS 2 remain stable at T = 300 K. While, according to voltage calculations, Zr 2 CS 2 can store Na up to three atomic layers, our MD simulations predict that the outermost layers detach from the Zr 2 CS 2 monolayer due to the weak interaction between Na ions and the monolayer. This suggests that MD simulations are essential to confirm the stability of an ion-electrode system – an insight that is mostly absent in previous studies. 
    more » « less
  4. Carbon nanotube (CNT)/epoxy nanocomposites have a great potential of possessing many advanced properties. However, the homogenization of CNT dispersion is still a great challenge in the research field of nanocomposites. This study applied a novel dispersion agent, carboxymethyl cellulose (CMC), to functionalize CNTs and improve CNT dispersion in epoxy. The effectiveness of the CMC functionalization was compared with mechanical mixing and a commonly used surfactant, sodium dodecylbenzene sulfonate (NaDDBS), regarding dispersion, mechanical and corrosion properties of CNT/epoxy nanocomposites with three different CNT concentrations (0.1%, 0.3% and 0.5%). The experimental results of Raman spectroscopy, particle size analysis and transmission electron microscopy showed that CMC functionalized CNTs reduced CNT cluster sizes more efficiently than NaDDBS functionalized and mechanically mixed CNTs, indicating a better CNT dispersion. The peak particle size of CMC functionalized CNTs reduced as much as 54% (0.1% CNT concentration) and 16% (0.3% CNT concentration), compared to mechanical mixed and NaDDBS functionalized CNTs. Because of the better dispersion, it was found by compressive tests that CNT/epoxy nanocomposites with CMC functionalization resulted in 189% and 66% higher compressive strength, 224% and 50% higher modulus of elasticity than those with mechanical mixing and NaDDBS functionalization respectively (0.1% CNT cencentration). In addition, electrochemical corrosion tests also showed that CNT/epoxy nanocomposites with CMC functionalization achieved lowest corrosion rate (0.214 mpy), the highest corrosion resistance (201.031 Ω·cm2), and the lowest porosity density (0.011%). 
    more » « less
  5. Ordered nanoscale patterns have been observed by atomic force microscopy at graphene–water and graphite–water interfaces. The two dominant explanations for these patterns are that (i) they consist of self-assembled organic contaminants or (ii) they are dense layers formed from atmospheric gases (especially nitrogen). Here we apply molecular dynamics simulations to study the behavior of dinitrogen and possible organic contaminants at the graphene–water interface. Despite the high concentration of N 2 in ambient air, we find that its expected occupancy at the graphene–water interface is quite low. Although dense (disordered) aggregates of dinitrogen have been observed in previous simulations, our results suggest that they are stable only in the presence of supersaturated aqueous N 2 solutions and dissipate rapidly when they coexist with nitrogen gas near atmospheric pressure. On the other hand, although heavy alkanes are present at only trace concentrations (micrograms per cubic meter) in typical indoor air, we predict that such concentrations can be sufficient to form ordered monolayers that cover the graphene–water interface. For octadecane, grand canonical Monte Carlo suggests nucleation and growth of monolayers above an ambient concentration near 6 μg m −3 , which is less than some literature values for indoor air. The thermodynamics of the formation of these alkane monolayers includes contributions from the hydration free-energy (unfavorable), the free-energy of adsorption to the graphene–water interface (highly favorable), and integration into the alkane monolayer phase (highly favorable). Furthermore, the peak-to-peak distances in AFM force profiles perpendicular to the interface (0.43–0.53 nm), agree with the distances calculated in simulations for overlayers of alkane-like molecules, but not for molecules such as N 2 , water, or aromatics. Taken together, these results suggest that ordered domains observed on graphene, graphite, and other hydrophobic materials in water are consistent with alkane-like molecules occupying the interface. 
    more » « less