skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational analysis of copper electrodeposition into a porous preform
Electroplating of metals into a porous preform with conductive walls is relevant in the fabrication of structural composites, fuel cells and batteries, and microelectronics. Electrodeposition process parameters, such as direct current or pulsed current, electric potential, and electrolyte concentration, as well as preform geometry, have important implications in the process outcomes including the filling process and the percentage of the infiltrated volume. Although electroplating into a vertical interconnect access (with nonconductive walls) for microelectronic applications has been extensively studied, the flow-through electroplating into a channel geometry with conducive walls has not been previously investigated. Here, copper infiltration into a such channel has been investigated using computational analysis for the first time. The effects of the inlet flow velocity, potential, electrolyte concentration, and microchannel geometry are systematically studied to quantify their influence on the electrodeposition rate, uniformity of the deposition front, and the infiltrated area within the channel. Computational results revealed that the unfilled area can be reduced to lower than 1% with a low applied potential, a high electrolyte concentration, and no inflow velocity. The results can be used to guide experiments involving electroplating metals into porous preforms toward reliable and reproducible manufacturing processes.  more » « less
Award ID(s):
2152732
PAR ID:
10597309
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
12
Issue:
5
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium metal penetrations through the liquid-electrolyte-wetted porous separator and solid electrolytes are a major safety concern of next-generation rechargeable metal batteries. Penetrations were frequently discovered to occur through only a few isolated channels, as revealed by “black spots” on both sides of the separator or electrolyte, which manifest a highly localized ionic flux or current density. Predictions of the penetration time have been difficult due to the hidden and unclear dynamics in these penetration channels. Here, using glass capillary cells, we investigate for the first time the unexpectedly sensitive influence of channel geometry on the concentration polarization and dendrite initiation processes. The characteristic time for the complete depletion of salt concentration at the surface of the advancing electrode, i.e. Sand's time, exhibits a nonlinear dependence on the curvature of the channel walls along the axial direction. While a positively deviated Sand's time scaling exponent can be used to infer a converging penetration area through the electrolyte, a negatively deviated scaling exponent suggests that diffusion limitations can be avoided in expanding channels, such that the fast-advancing tip-growing dendrites will not be initiated. The safety design of rechargeable metal batteries will benefit from considering the true local current densities and the conduction structures. 
    more » « less
  2. Abstract Ocean wave-powered reverse osmosis (RO) desalination is an emerging field of study that combines the utilization of ocean energy and RO desalination techniques. However, due to the significant fluctuations in pressure and flow rate within the hydraulic system, an accurate transient model is necessary to estimate its performance accurately and effectively. This paper presents a two-dimensional transient model based on the pressure-correction algorithm to simulate the channel flow with porous walls and time-dependent inlet conditions. The coupled pressure, velocity, and salt concentration problem is solved iteratively by decoupling each term and updating them separately. The model is validated by comparing the results with analytical film theory which estimates the formation of the concentration polarization layer under constant inlet conditions. The performance of the RO systems, especially the concentration polarization phenomenon at the member surface, is investigated using different input conditions, including constant flow condition and sinusoidal flow condition. The salt concentration and permeate flux at the membrane boundary are studied to understand the effect of the dynamic inputs. Results show that the system can reach a higher maximum wall concentration and higher average recovery ratio in sinusoidal signal compared with the constant input. The model’s adaptability to different flow regimes, from steady to sinusoidal, underscores its potential as a valuable tool in optimizing RO desalination powered by ocean wave energy. 
    more » « less
  3. Laboratory experiments were conducted to study particle migration and flow properties of non-Brownian, noncolloidal suspensions ranging from 10% to 40% particle volume fraction in a pressure-driven flow over and through a porous structure at a low Reynolds number. Particle concentration maps, velocity maps, and corresponding profiles were acquired using a magnetic resonance imaging technique. The model porous medium consists of square arrays of circular rods oriented across the flow in a rectangular microchannel. It was observed that the square arrays of the circular rods modify the velocity profiles and result in heterogeneous concentration fields for various suspensions. As the bulk particle volume fraction of the suspension increases, particles tend to concentrate in the free channel relative to the porous medium while the centerline velocity profile along the lateral direction becomes increasingly blunted. Within the porous structure, concentrated suspensions exhibit smaller periodic axial velocity variations due to the geometry compared to semidilute suspensions (bulk volume fraction ranges from 10% to 20%) and show periodic concentration variations, where the average particle concentration is slightly greater between the rods than on top of the rods. For concentrated systems, high particle concentration pathways aligned with the flow direction are observed in regions that correspond to gaps between rods within the porous medium. 
    more » « less
  4. Instabilities during metal electrodeposition create dendrites on the plating surfaces. In high energy density lithium metal batteries (LMBs) dendrite growth causes safety issues and accelerated aging. In this paper, analytical models predict that dendrite growth can be controlled and potentially eliminated by small advective flows normal to the surface of lithium metal electrode. Electrolyte flow towards the Li metal electrode lowers the dendrite growth rate, overpotential, and impedance. Flow in the opposite direction, however, enhances the dendrite growth. For every current density, there exists a critical velocity above which dendrite growth can be totally eliminated. The critical velocity increases almost linearly with increasing current density. For typical current densities and inter-electrode separation, the critical velocity is very small, indicating the potential for practical application. 
    more » « less
  5. In this work, we present a proof of concept for both 3D-printed media and a machine learning analysis methodology to investigate void formation and transport during liquid filling. Through a series of experiments, we characterized void formation and transport at constant flow rates using two calibrated fabric-like porous geometries created by Stereolithography and Multi Jet Fusion 3D printing techniques. Our findings highlight the significance of porous medium geometry and void size, in addition to the capillary number, in characterizing void formation and mobility during resin flow into a mold containing a fibrous preform. Notably, the paper's strength lies in the presentation of advanced bubble analysis methods, including frame-by-frame high-resolution video analysis, enabling the identification of individual bubbles and the extraction of their statistics, such as count, size, and velocity throughout the experiment. These insights contribute to the design of more efficient processes, resulting in composite parts with reduced void content. 
    more » « less