Abstract Recent experiments demonstrate polaritons under the vibrational strong coupling (VSC) regime can modify chemical reactivity. Here, we present a complete theory of VSC-modified rate constants when coupling a single molecule to an optical cavity, where the role of photonic mode lifetime is understood. The analytic expression exhibits a sharp resonance behavior, where the maximum rate constant is reached when the cavity frequency matches the vibration frequency. The theory explains why VSC rate constant modification closely resembles the optical spectra of the vibration outside the cavity. Further, we discussed the temperature dependence of the VSC-modified rate constants. The analytic theory agrees well with the numerically exact hierarchical equations of motion (HEOM) simulations for all explored regimes. Finally, we discussed the resonance condition at the normal incidence when considering in-plane momentum inside a Fabry-Pérot cavity.
more »
« less
Whispering gallery modes of a triatomic photonic molecule
In this paper, we present the results of numerical simulations of the optical spectra of a three-sphere photonic molecule. The configuration of the system was continuously modified from linear to triangular, in-plane with the fundamental mode excited in one of the spheres and perpendicular to it. We found the relative insensitivity of the spectra to the in-plane deviation from the linear arrangement up to about 110°. For larger angles, the spectra show significant modification consisting of the major spectral peaks splitting and shifting. On the contrary, the spectra are quite sensitive to out-of-plane molecule deviation, even at small angles. Thus, the spectra of photonic molecules can be modified by changing the mutual positions of the constituent resonators, which can be useful in reconfigurable photonic devices.
more »
« less
- Award ID(s):
- 2102249
- PAR ID:
- 10597390
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 12
- Issue:
- 11
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Orientations of active antithetic faults can provide useful constraints on in situ strength of the seismogenic crust. We use LINSCAN, a new unsupervised learning algorithm for identifying quasi‐linear clusters of earthquakes, to map small‐scale strike‐slip faults in the Anza‐Borrego shear zone, Southern California. We identify 332 right‐ and left‐lateral faults having lengths between 0.1 and 3 km. The dihedral angles between all possible pairs of conjugate faults are nearly normally distributed around 70°, with a standard deviation of ∼30°. The observed dihedral angles are larger than those expected assuming optimal fault orientations and the coefficient of friction of 0.6–0.8, but similar to the distribution previously reported for the Ridgecrest area in the Eastern California Shear Zone. We show that the observed fault orientations can be explained by fault rotation away from the principal shortening axis due to a cumulated tectonic strain.more » « less
-
Controlling spectral selectivity in optoelectronics via photonic band engineering in absorbing mediaThe most common solution for achieving arbitrary spectral selectivity in optoelectronic devices is adding external filters. Here we propose using semiconductor thin film photonic crystals with relevant photonic bands that fall within the absorbing frequency range of the material for spectral selectivity. Optical simulations show that the in-plane photonic bands couple strongly to normal-incidence external fields, inducing tunable resonance features in the out-of-plane transmission and reflection spectra. Experimentally, we fabricate a proof-of-principle photonic structure with enhanced visible transparency, consisting of a self-assembled polystyrene bead array infiltrated with colloidal quantum dots, showing promise for multijunction and transparent photovoltaics.more » « less
-
Although useful to extract excitation energies of states of double-excitation character in time-dependent density functional theory that are missing in the adiabatic approximation, the frequency-dependent kernel derived earlier [Maitra et al., J. Chem. Phys. 120, 5932 (2004)] was not designed to yield oscillator strengths. These are required to fully determine linear absorption spectra, and they also impact excited-to-excited-state couplings that appear in dynamics simulations and other quadratic response properties. Here, we derive a modified non-adiabatic kernel that yields both accurate excitation energies and oscillator strengths for these states. We demonstrate its performance on a model two-electron system, the Be atom, and on excited-state transition dipoles in the LiH molecule at stretched bond-lengths, in all cases producing significant improvements over the traditional approximations.more » « less
-
Abstract Strained materials can exhibit drastically modified physical properties in comparison to their fully relaxed analogues. We report on the x-ray absorption spectra (XAS) and magnetic circular dichroism (XMCD) of a strained NiFe 2 O 4 inverse spinel film grown on a symmetry matched single crystal MgGa 2 O 4 substrate. The Ni XAS spectra exhibit a sizable difference in the white line intensity for measurements with the x-ray electric field parallel to the film plane (normal incidence) vs when the electric field is at an angle (off-normal). A considerable difference is also observed in the Fe L 2,3 XMCD spectrum. Modeling of the XAS and XMCD spectra indicate that the modified energy ordering of the cation 3 d states in the strained film leads to a preferential filling of 3 d states with out-of-plane character. In addition, the results point to the utility of x-ray spectroscopy in identifying orbital populations even with elliptically polarized x-rays.more » « less
An official website of the United States government
