skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Angle Active Conjugate Faults in the Anza‐Borrego Shear Zone, Southern California
Abstract Orientations of active antithetic faults can provide useful constraints on in situ strength of the seismogenic crust. We use LINSCAN, a new unsupervised learning algorithm for identifying quasi‐linear clusters of earthquakes, to map small‐scale strike‐slip faults in the Anza‐Borrego shear zone, Southern California. We identify 332 right‐ and left‐lateral faults having lengths between 0.1 and 3 km. The dihedral angles between all possible pairs of conjugate faults are nearly normally distributed around 70°, with a standard deviation of ∼30°. The observed dihedral angles are larger than those expected assuming optimal fault orientations and the coefficient of friction of 0.6–0.8, but similar to the distribution previously reported for the Ridgecrest area in the Eastern California Shear Zone. We show that the observed fault orientations can be explained by fault rotation away from the principal shortening axis due to a cumulated tectonic strain.  more » « less
Award ID(s):
1841273 2012266
PAR ID:
10481892
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Strength of the upper brittle part of the Earth's lithosphere controls deformation styles in tectonically active regions, surface topography, seismicity, and the occurrence of plate tectonics, yet it remains one of the most debated quantities in geophysics. Direct measurements of stresses acting at seismogenic depths are largely lacking. Seismic data (in particular, earthquake focal mechanisms) have been used to infer orientation of the principal stress axes. I show that the focal mechanism data can be combined with information from precise earthquake locations to place constraints not only on the orientation, but also on the magnitude of absolute stress at depth. The proposed method uses relative attitudes of conjugate faults to evaluate the amplitude and spatial heterogeneity of the deviatoric stress and frictional strength in the seismogenic zone. Relative fault orientations (dihedral angles) and sense of slip are determined using quasi‐planar clusters of seismicity and their composite focal mechanisms. The observed distribution of dihedral angles between active conjugate faults in the area of Ridgecrest (California, USA) that hosted a recent sequence of strong earthquakes suggests in situ coefficient of friction of 0.4–0.6, and depth‐averaged shear stress on the order of 25–40 MPa, intermediate between predictions of the “strong” and “weak” fault theories. 
    more » « less
  2. Abstract The Eastern California shear zone is a complex set of dextral faults that accommodates significant plate motion and has produced large earthquakes. The evolution of this system and why it consists of closely spaced, irregular faults that fail in multi‐fault ruptures are not well understood. Here we analyze the geometry, spatial distribution, and Quaternary slip activity of right‐lateral faults in the southern Mojave block. We find these faults are oriented favorably for accommodating regional dextral plate motion and do not show evidence of replacement following counterclockwise rotation to unfavorable positions, although activity may be migrating westward as previously proposed. We also confirm that the shear zone is transpressive, with widespread restraining bends, distributed convergent deformation, and significant impact on near‐fault topography. Observations also show that faults are geometrically complex, as represented by along‐strike variability in fault strike. We document a correlation between strike variability and fault activity (slip rate or net slip), which is evident within the shear zone as well as for a control group of other faults. We suggest that strike variability represents a form of geometric roughness, which may inhibit fault slip and result in complex ruptures, slip‐strengthening behavior, and a prevalence of off‐fault deformation. Other factors, including preexisting crustal fabric, edge effects, and changes in the stress field, may further complicate kinematics. These results suggest that faults of the shear zone are still juvenile and somewhat unique, yet offer an important window into how broadly distributed shear may evolve into a through‐going continental transform system. 
    more » « less
  3. Abstract To discern spatial and explore possible existence of temporal variations of upper crustal anisotropy in an ∼15 km section of the San Jacinto Fault Zone (SJFZ) that is composed of the Buck Ridge and Clark faults in southern California, we conduct a systematic shear wave splitting investigation using local S‐wave data recorded by three broadband seismic stations located near the surface expression of the SJFZ. An automatic data selection and splitting measurement procedure is first applied, and the resulting splitting measurements are then manually screened to ensure reliability of the results. Strong spatial variations in crustal anisotropy are revealed by 1,694 pairs of splitting parameters (fast polarization orientation and splitting delay time), as reflected by the dependence of the resulting splitting parameters on the location and geometry of the raypaths. For raypaths traveling through the fault zones, the fast orientations are dominantly WNW‐ESE which is parallel to the faults and may be attributed to fluid‐filled fractures in the fault zones. For non‐fault‐zone crossing raypaths, the fast orientations are dominantly N–S which are consistent with the orientation of the regional maximum compressive stress. A three‐dimensional model of upper crustal anisotropy is constructed based on the observations. An increase in the raypath length normalized splitting times is observed after the 03/11/2013 M4.7 earthquake, which is probably attributable to changes in the spatial distribution of earthquakes before and after the M4.7 earthquake rather than reflecting temporal changes of upper crustal anisotropy. 
    more » « less
  4. Abstract Although the surface deformation of tectonic plate boundaries is well determined by geological and geodetic measurements, the pattern of flow below the lithosphere remains poorly constrained. We use the crustal velocity field of the Plate Boundary Observatory to illuminate the distribution of horizontal flow beneath the California margin. At lower-crustal and upper-mantle depths, the boundary between the Pacific and North American plates is off-centered from the San Andreas fault, concentrated in a region that encompasses the trace of nearby active faults. A major step is associated with return flow below the Eastern California Shear Zone, leading to the extrusion of the Mojave block and a re-distribution of fault activity since the Pleistocene. Major earthquakes in California have occurred above the regions of current plastic strain accumulation. Deformation is mechanically coupled from the crust to the asthenosphere, with mantle flow overlaid by a kinematically consistent network of faults in the brittle crust. 
    more » « less
  5. Abstract Mature faults with large cumulative slip often separate rocks with dissimilar elastic properties and show asymmetric damage distribution. Elastic contrast across such bimaterial faults can significantly modify various aspects of earthquake rupture dynamics, including normal stress variations, rupture propagation direction, distribution of ground motions, and evolution of off‐fault damage. Thus, analyzing elastic contrasts of bimaterial faults is important for understanding earthquake physics and related hazard potential. The effect of elastic contrast between isotropic materials on rupture dynamics is relatively well studied. However, most fault rocks are elastically anisotropic, and little is known about how the anisotropy affects rupture dynamics. We examine microstructures of the Sandhill Corner shear zone, which separates quartzofeldspathic rock and micaceous schist with wider and narrower damage zones, respectively. This shear zone is part of the Norumbega fault system, a Paleozoic, large‐displacement, seismogenic, strike‐slip fault system exhumed from middle crustal depths. We calculate elastic properties and seismic wave speeds of elastically anisotropic rocks from each unit having different proportions of mica grains aligned sub‐parallel to the fault. Our findings show that the horizontally polarized shear wave propagating parallel to the bimaterial fault (with fault‐normal particle motion) is the slowest owing to the fault‐normal compliance and therefore may be important in determining the elastic contrast that affects rupture dynamics in anisotropic media. Following results from subshear rupture propagation models in isotropic media, our results are consistent with ruptures preferentially propagated in the slip direction of the schist, which has the slower horizontal shear wave and larger fault‐normal compliance. 
    more » « less